中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

密闭酸溶-电感耦合等离子体发射光谱/质谱法测定花岗伟晶岩中32种微量元素

夏传波, 成学海, 姜云, 张文娟, 陈明桂, 赵伟. 密闭酸溶-电感耦合等离子体发射光谱/质谱法测定花岗伟晶岩中32种微量元素[J]. 岩矿测试, 2024, 43(2): 247-258. doi: 10.15898/j.ykcs.202307310105
引用本文: 夏传波, 成学海, 姜云, 张文娟, 陈明桂, 赵伟. 密闭酸溶-电感耦合等离子体发射光谱/质谱法测定花岗伟晶岩中32种微量元素[J]. 岩矿测试, 2024, 43(2): 247-258. doi: 10.15898/j.ykcs.202307310105
XIA Chuanbo, CHENG Xuehai, JIANG Yun, ZHANG Wenjuan, CHEN Minggui, ZHAO Wei. Determination of 32 Trace Elements in Granite Pegmatite by Inductively Coupled Plasma-Optical Emission Spectrometry and Mass Spectrometry with Closed Acid Dissolution[J]. Rock and Mineral Analysis, 2024, 43(2): 247-258. doi: 10.15898/j.ykcs.202307310105
Citation: XIA Chuanbo, CHENG Xuehai, JIANG Yun, ZHANG Wenjuan, CHEN Minggui, ZHAO Wei. Determination of 32 Trace Elements in Granite Pegmatite by Inductively Coupled Plasma-Optical Emission Spectrometry and Mass Spectrometry with Closed Acid Dissolution[J]. Rock and Mineral Analysis, 2024, 43(2): 247-258. doi: 10.15898/j.ykcs.202307310105

密闭酸溶-电感耦合等离子体发射光谱/质谱法测定花岗伟晶岩中32种微量元素

  • 基金项目: 国家重点研发计划项目(2021YFC2903004)课题“战略性矿产岩矿分析标准物质研制”
详细信息
    作者简介: 夏传波,硕士,高级工程师,主要从事岩矿分析工作。E-mail:chuanbo007@126.com
    通讯作者: 赵伟,博士,研究员,主要从事岩矿分析等工作。E-mail:workzhaowei@163.com
  • 中图分类号: O657.31; O657.63

Determination of 32 Trace Elements in Granite Pegmatite by Inductively Coupled Plasma-Optical Emission Spectrometry and Mass Spectrometry with Closed Acid Dissolution

More Information
  • 花岗伟晶岩富集锂铍铷铯铌钽等稀有金属元素,准确测定其中的大离子亲石元素、高场强元素和稀土等微量元素,可用于判断成矿流体物质来源、成岩构造环境。目前的测试方法研究主要集中在锂铍铷铯铌钽等少数元素,样品消解方法有四酸敞开法、五酸敞开法、密闭酸溶法等,存在难溶矿物分解不完全、锆铪钍铀和稀土等元素回收率偏低等问题。本文对比了盐酸-硝酸-氢氟酸-高氯酸敞开消解法、盐酸-硝酸-氢氟酸-高氯酸-硫酸敞开消解法、硝酸-氢氟酸密闭消解法三种方法的分解效果。结果表明:四酸消解法中,铌钽锆铪钨和重稀土元素结果严重偏低;五酸消解法由于采用硫酸-氢氟酸-过氧化氢体系提取,有效地防止了铌钽的水解,铌钽钨等元素测定结果准确,但锆铪钡铅和轻稀土元素测定结果偏低。硝酸-氢氟酸密闭消解法使用王水代替硝酸进行残渣复溶,促进了铌钽锆铪和稀土等元素的复溶,采用电感耦合等离子体发射光谱和质谱法(ICP-OES/MS)可以准确测定花岗伟晶岩中稀有金属、稀土元素等32种元素,方法检出限为0.004~2.50μg/g,精密度(RSD,n=12)为1.0%~8.3%。将该方法应用于8种花岗岩、伟晶岩及稀有金属矿标准物质和三种类型实际样品的测定,标准物质的测定值与标准值基本相符。

  • 加载中
  • 图 1  标准物质(a) GBW07103、(b) GBW07125、(c) GBW07152、(d) GBW07153、(e) GBW07154三种样品分解方法分析结果的比较

    Figure 1. 

    图 2  标准物质(a) GBW07155、(b) GBW07184、(c) GBW07185三种样品分解方法分析结果的比较

    Figure 2. 

    图 3  三种实际样品的稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)

    Figure 3. 

    表 1  硝酸-氢氟酸密闭消解法的检出限

    Table 1.  Detection limits of nitric acid-hydrofluoric acid closed digestion method

    元素 检出限(μg/g) 元素 检出限(μg/g)
    Li 0.04 Eu 0.005
    Be 0.03 Gd 0.006
    Ti 2.50 Tb 0.006
    Ga 0.30 Dy 0.005
    Rb 0.50 Ho 0.02
    Y 0.02 Er 0.005
    Zr 0.05 Tm 0.02
    Nb 0.02 Yb 0.006
    Sn 0.05 Lu 0.006
    Cs 0.02 Hf 0.007
    Ba 0.20 Ta 0.07
    La 0.02 Tl 0.02
    Ce 0.05 Pb 0.30
    Pr 0.02 W 0.02
    Nd 0.01 Th 0.02
    Sm 0.004 U 0.01
    下载: 导出CSV

    表 2  硝酸-氢氟酸密闭消解分析方法的精密度和准确度

    Table 2.  Precision and accuracy tests of nitric acid-hydrofluoric acid closed digestion method

    元素 GBW07125 GBW07184
    测定平均值
    (µg/g)
    标准值与
    不确定度
    (µg/g)
    RSD
    (%)
    相对误差
    (%)
    测定平均值
    (µg/g)
    标准值与
    不确定度
    (µg/g)
    RSD
    (%)
    相对误差
    (%)
    Li 14.06 14.4±1.1 3.2 −2.4 1.83** 1.81±0.07** 1.7 0.4
    Be 1.23 1.3±0.3 4.8 −5.4 62.8 59.1±5.1 1.6 6.3
    Ti 3650 3657 1.0 −0.2 165 174 6.0 −5.2
    Ga 14.90 13.5±0.7 4.4 10.4 79.1 / 2.4 /
    Rb 159 155±8 2.6 2.6 1.23** 1.13±0.04** 1.4 8.3
    Y 1.77 1.6±0.3 6.4 10.6 2.55 2.36± 4.8 8.1
    Zr 29.6 29.3* 5.4 1.0 12.6 / 7.1 /
    Nb 15.6 14.6±1.8 2.5 6.8 61.8 56.6±7.5 3.2 9.2
    Sn 3.36 3.5±0.9 3.2 −4.0 151 152±3 1.6 −0.7
    Cs 1.79 1.8±0.2 2.2 −0.6 2925 2830±95 1.8 3.4
    Ba 767 (728) 1.2 5.4 14.7 / 5.2 /
    La 3.59 (3.3) 4.6 8.8 0.89 0.96±0.20 5.6 −7.3
    Ce 5.07 (5) 4.0 1.4 1.45 (1.52) 2.6 −4.6
    Pr 0.53 0.48±0.10 5.2 10.4 0.37 0.38±0.06 7.2 −2.6
    Nd 1.62 1.5±0.2 3.6 8.0 1.54 1.42±0.15 5.0 8.5
    Sm 0.25 (0.24) 3.4 4.2 0.43 0.46±0.03 5.6 −6.5
    Eu 0.17 (0.16) 7.6 6.3 0.091 0.083±0.08 2.2 9.6
    Gd 0.26 0.22±0.04 6.2 11.2 0.50 0.49±0.06 3.0 2.0
    Tb 0.042 (0.04) 7.2 5.0 0.096 0.085±0.009 5.4 12.9
    Dy 0.22 0.20±0.05 3.0 10.0 0.44 0.43±0.06 4.6 2.3
    Ho 0.041 (0.04) 5.4 2.5 0.089 0.082±0.005 7.2 8.5
    Er 0.11 0.12±0.01 7.4 −8.3 0.22 0.21±0.04 5.2 4.8
    Tm 0.021 (0.02) 8.3 5.0 0.032 0.033±0.004 7.0 −3.0
    Yb 0.23 0.21±0.09 4.1 9.5 0.21 0.19±0.03 2.9 10.5
    Lu 0.033 0.03±0.01 7.0 10.0 0.036 0.032±0.004 8.2 12.5
    Hf 0.83 (0.8) 2.2 3.7 2.57 / 4.0 /
    Ta 1.28 1.3±0.5 4.4 −1.5 117 108±11 1.8 8.3
    Tl 1.23 / 5.8 / 65.1 / 1.4 /
    Pb 36.9 34.6 7.1 6.6 8.03 / 6.2 /
    W 3.19 3.2±0.2 2.8 −0.3 80.0 79.0±5.6 1.6 1.3
    Th 0.71 0.66±0.10 3.0 7.6 3.31 / 2.4 /
    U 0.76 (0.75) 6.3 1.3 2.87 / 3.8 /
    注:标注“*”的数据来自文献[27];标注“**”数据的单位为10−2
    下载: 导出CSV

    表 3  实际样品不同消解方法测定结果比对

    Table 3.  Comparison of analytical results of different digestion methods for actual samples

    元素 样品HWJY-1测定值(μg/g) 样品HWJY-2测定值(μg/g) 样品HWJY-3测定值(μg/g)
    密闭法
    (本文方法)
    五酸法 碱熔法 密闭法
    (本文方法)
    五酸法 碱熔法 密闭法
    (本文方法)
    五酸法 碱熔法
    Nb 71.9 77.2 79.1 80.0 71.8 83.2 80.7 76.4 81.9
    Ta 66.3 67.3 70.1 66.6 64.2 67.5 1111 1080 1184
    W 8.13 8.16 8.05 5.96 5.79 5.958 12.9 14.0 13.35
    Sn 85.5 79.8 86.7 239 83.0 242 15.4 14.0 16.2
    下载: 导出CSV
  • [1]

    李建康, 李鹏, 严清高, 等. 中国花岗伟晶岩的研究历程及发展态势[J]. 地质学报, 2021, 95(10): 2996−3016. doi: 10.3969/j.issn.0001-5717.2021.10.005

    Li J K, Li P, Yan Q G, et al. History of granitic pegmatite research in China[J]. Acta Geologica Sinica, 2021, 95(10): 2996−3016. doi: 10.3969/j.issn.0001-5717.2021.10.005

    [2]

    周晶, 周姣花, 徐畅, 等. 河南某地花岗伟晶岩型铌钽等稀有金属赋存状态研究[J]. 矿产综合利用, 2023, 44(5): 86−92. doi: 10.3969/j.issn.1000-6532.2023.05.016

    Zhou J, Zhou J H, Xu C, et al. Study on occurrence states of rare metal elements in a granite pegmatite pattern niobium-tantalum ore in Henan[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(5): 86−92. doi: 10.3969/j.issn.1000-6532.2023.05.016

    [3]

    屈文俊, 王登红, 朱云, 等. 稀土稀有稀散元素现代仪器测试全新方法的建立[J]. 地质学报, 2019, 93(6): 1514−1522. doi: 10.3969/j.issn.0001-5717.2019.06.026

    Qu W J, Wang D H, Zhu Y, et al. Establishment of new method for critical elements determination using modern analytical instruments[J]. Acta Geologica Sinica, 2019, 93(6): 1514−1522. doi: 10.3969/j.issn.0001-5717.2019.06.026

    [4]

    李超, 王登红, 屈文俊, 等. 关键金属元素分析测试技术方法应用进展[J]. 岩矿测试, 2020, 39(5): 658−669.

    Li C, Wang D H, Qu W J, et al. A review and perspective on analytical methods of critical metal elements[J]. Rock and Mineral Analysis, 2020, 39(5): 658−669.

    [5]

    赵学沛. 多种酸溶矿ICP-AES测定稀有金属矿中锂铍铌钽锡[J]. 化学研究与应用, 2017, 29(11): 1714−1718. doi: 10.3969/j.issn.1004-1656.2017.11.017

    Zhao X P. Determination of lithium, beryllium, niobium, tantalum and tin in rare metal ores by four acid soluble ICP-AES[J]. Chemical Research and Application, 2017, 29(11): 1714−1718. doi: 10.3969/j.issn.1004-1656.2017.11.017

    [6]

    郭晓瑞, 王甜甜, 张宏丽, 等. 电感耦合等离子体质谱法测定地球化学样品中铌钽钨锡[J]. 冶金分析, 2021, 41(3): 44−50.

    Guo X R, Wang T T, Zhang H L, et al. Determination of niobium, tantalum, tungsten and tin in geochemical samples by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2021, 41(3): 44−50.

    [7]

    徐洪柳. 电感耦合等离子体原子发射光谱(ICP-AES)法测定尼日利亚铌钽锂矿石中的铌、钽、锂[J]. 中国无机分析化学, 2020, 10(3): 33−38. doi: 10.3969/j.issn.2095-1035.2020.03.007

    Xu H L. Detection of lithium niobium tantalum from niobium ore in Nigeria by inductively coupled plasma emission spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(3): 33−38. doi: 10.3969/j.issn.2095-1035.2020.03.007

    [8]

    龚仓, 丁洋, 陆海川, 等. 五酸溶样-电感耦合等离子体质谱法同时测定地质样品中的稀土等28种金属元素[J]. 岩矿测试, 2021, 40(3): 340−348.

    Gong C, Ding Y, Lu H C, et al. Simultaneous determination of 28 elements including rare earth elements by ICP-MS with five-acid dissolution[J]. Rock and Mineral Analysis, 2021, 40(3): 340−348.

    [9]

    李志伟, 赵晓亮, 李珍, 等. 敞口酸熔-电感耦合等离子体发射光谱法测定稀有多金属矿选矿样品中的铌钽和伴生元素[J]. 岩矿测试, 2017, 36(6): 594−600.

    Li Z W, Zhao X L, Li Z, et al. Determination of niobium, tantalum and associated elements in niobium-tantalum ore by inductively coupled plasma-optical emission spectrometry with open acid dissolution[J]. Rock and Mineral Analysis, 2017, 36(6): 594−600.

    [10]

    杨林, 邹国庆, 周武权, 等. 微波消解-电感耦合等离子体质谱(ICP-MS)法测定稀有多金属矿中锂铍铌钽铷铯[J]. 中国无机分析化学, 2023, 13(8): 825−830. doi: 10.3969/j.issn.2095-1035.2023.08.006

    Yang L, Zou G Q, Zhou W Q, et al. Determination of Li, Be, Nb, Ta, Rb, Cs in rare polymetallic ores by inductively coupled plasma mass spectrometry (ICP-MS) with microwave digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(8): 825−830. doi: 10.3969/j.issn.2095-1035.2023.08.006

    [11]

    禹丽, 王庆飞, 李龚健, 等. 保山地块漕涧花岗伟晶岩地球化学、锆石U-Pb年代学及其地质意义[J]. 岩石学报, 2015, 31(11): 3281−3296.

    Yu L, Wang Q F, Li G J, et al. Geochemistry, zircon U-Pb geochronology of granitic pegmatites from Caojian area in the Northern Baoshan Block, and their geological significance[J]. Acta Petrologica Sinica, 2015, 31(11): 3281−3296.

    [12]

    黄小强, 李鹏, 张立平, 等. 湖南仁里稀有金属矿田36号伟晶岩地球化学特征、成矿时代及其意义[J]. 矿床地质, 2021, 40(6): 1248−1266.

    Huang X Q, Li P, Zhang L P, et al. Geochemical characteristics and metallogenic age of No. 36 pegmatite in Renli rare metal ore field, Hunan Province, and their significance[J]. Mineral Deposits, 2021, 40(6): 1248−1266.

    [13]

    刘新星, 张娟, 李肖龙, 等. 北秦岭卢氏龙潭沟—火炎沟锡矿床成矿作用探讨——来自花岗伟晶岩年代学、岩石地球化学的证据[J]. 岩石学报, 2023, 39(5): 1484−1500. doi: 10.18654/1000-0569/2023.05.16

    Liu X X, Zhang J, Li X L, et al. Metallogeny of the Longtangou—Huoyangou Sn deposit in North Qinling orogeny: Geochronological and petrogeochemical evidence from Sn-bearing granite-pegmatite[J]. Acta Petrologica Sinica, 2023, 39(5): 1484−1500. doi: 10.18654/1000-0569/2023.05.16

    [14]

    李黎, 郭冬发, 黄秋红, 等. 混合硼酸锂盐熔融-混酸消解-ICP-MS测定伟晶岩样品中的稀土、铀、钍等元素[J]. 铀矿地质, 2022, 38(2): 361−369. doi: 10.3969/j.issn.1000-0658.2022.38.033

    Li L, Guo D F, Huang Q H, et al. Determination of REE, U, Th and other elements in pegmatite samples by ICP-MS using mixed lithium borate fusion-mixed acids digestion[J]. Uranium Geology, 2022, 38(2): 361−369. doi: 10.3969/j.issn.1000-0658.2022.38.033

    [15]

    杨惠玲, 杜天军, 王书勤, 等. 电感耦合等离子体质谱法测定金属矿中稀土和稀散元素[J]. 冶金分析, 2022, 42(5): 8−14.

    Yang H L, Du T J, Wang S Q, et al. Determination of rare earth and scattered elements in metallic ores by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2022, 42(5): 8−14.

    [16]

    Yu Z, Robinson P, McGoldrick P. An evaluation of methods for the chemical decomposition of geological materials for trace element determination using ICP-MS[J]. Geostandards Newsletter, 2010, 25(2-3): 199−217.

    [17]

    Roy P, Balaram V, Kumar A, et al. New REE and trace element data on two kimberlitic reference materials by ICP-MS[J]. Geostandards and Geoanalytical Research, 2007, 31(3): 261−273. doi: 10.1111/j.1751-908X.2007.00836.x

    [18]

    何红蓼, 李冰, 韩丽荣, 等. 封闭压力酸溶-ICP-MS法分析地质样品中47个元素的评价[J]. 分析试验室, 2021, 21(5): 8-12.

    He H L, Li B, Han L R, et al. Evaluation of determining 47 elements in geological samples by pressurized acid digestion-ICP-MS[J]. Chinese Journal of Analysis Laboratory, 2002, 21(5): 8-12.

    [19]

    张保科, 温宏利, 王蕾, 等. 封闭压力酸溶-盐酸提取-电感耦合等离子体质谱法测定地质样品中的多元素[J]. 岩矿测试, 2011, 30(6): 737−744. doi: 10.3969/j.issn.0254-5357.2011.06.016

    Zhang B K, Wen H L, Wang L, et al. Quantification of multi elements in geological samples by inductively coupled plasma-mass spectrometry with pressurized decomposition-hydrochloric acid extraction[J]. Rock and Mineral Analysis, 2011, 30(6): 737−744. doi: 10.3969/j.issn.0254-5357.2011.06.016

    [20]

    张保科, 许俊玉, 王蕾, 等. 锂辉石样品中稀有稀散稀土等多元素的测定方法[J]. 桂林理工大学学报, 2016, 36(1): 184−190. doi: 10.3969/j.issn.1674-9057.2016.01.025

    Zhang B K, Xu J Y, Wang L, et al. Multi-elements simultaneous determination methods for rare, scattered and rare earth elements in spodumene samples[J]. Journal of Guilin University of Technology, 2016, 36(1): 184−190. doi: 10.3969/j.issn.1674-9057.2016.01.025

    [21]

    胡兰基, 朱琳, 赵玉卿, 等. 电感耦合等离子体质谱法测定花岗伟晶岩中锂、铍、铷、铯、铌和钽[J]. 化工矿产地质, 2020, 42(4): 348−351, 355. doi: 10.3969/j.issn.1006-5296.2020.04.011

    Hu L J, Zhu L, Zhao Y Q, et al. Determination of Li, Be, Rb, Cs, Nb and Ta in granite-pegmatite by inductively coupled plasma mass spectrometry[J]. Geology of Chemical Minerals, 2020, 42(4): 348−351, 355. doi: 10.3969/j.issn.1006-5296.2020.04.011

    [22]

    朱志刚, 李美丽, 方晓红, 等. 电感耦合等离子体质谱法和电感耦合等离子体原子发射光谱法相结合测定地球化学样品中锂铍铷铯铌钽[J]. 冶金分析, 2023, 43(2): 65−72.

    Zhu Z G, Li M L, Fang X H, et al. Determination of lithium, beryllium, rubidium, cesium, niobium and tantalum in geochemical samples by inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2023, 43(2): 65−72.

    [23]

    曾美云, 何启生, 邵鑫, 等. 全自动石墨消解-电感耦合等离子体质谱法测定土壤和水系沉积物中稀土元素[J]. 岩矿测试, 2023, 42(3): 502−512.

    Zeng M Y, He Q S, Shao X, et al. Determination of rare earth elements in soil and stream sediment by inductively coupled plasma-mass spectrometry with automatic graphite digestion[J]. Rock and Mineral Analysis, 2023, 42(3): 502−512.

    [24]

    代小吕, 董利明, 赵欣, 等. 沉淀分离-电感耦合等离子体质谱法测定方铅矿中铊[J]. 分析试验室, 2016, 35(3): 263−265.

    Dai X L, Dong L M, Zhao X, et al. Determination of thallium in galena by precipitation separation combined with inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2016, 35(3): 263−265.

    [25]

    孙朝阳, 董利明, 贺颖婷, 等. 电感耦合等离子体质谱法测定地质样品中钪镓锗铟镉铊时的干扰及其消除方法[J]. 理化检验(化学分册), 2016, 52(9): 1026−1030.

    Sun C Y, Dong L M, He Y T, et al. Elimination of interferences in ICP-MS determination of Sc, Ga, Ge, In, Cd and Tl in geological samples[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2016, 52(9): 1026−1030.

    [26]

    孙孟华, 李晓敬, 王文娟, 等. 过氧化钠碱熔-电感耦合等离子体质谱法测定地质样品中锆铌铪钽锂铍钒磷铀锰[J]. 冶金分析, 2022, 42(1): 78−84.

    Sun M H, Li X J, Wang W J, et al. Determination of zirconium, niobium, hafnium, tantalum, lithium, beryllium, vanadium, phosphorus, uranium and manganese in geological samples by inductively coupled plasma mass spectrometry with sodium peroxide alkali fusion[J]. Metallurgical Analysis, 2022, 42(1): 78−84.

    [27]

    刘晔, 第五春荣, 柳小明, 等. 密闭高温高压溶样ICP-MS测定56种国家地质标准物质中的36种痕量元素——对部分元素参考值修正和定值的探讨[J]. 岩矿测试, 2013, 32(2): 221−228. doi: 10.3969/j.issn.0254-5357.2013.02.006

    Liu Y, Diwu C R, Liu X M, et al. Determination of 36 trace elements in 56 Chinese national standard reference materials by ICP-MS with pressurized acid-digestion[J]. Rock and Mineral Analysis, 2013, 32(2): 221−228. doi: 10.3969/j.issn.0254-5357.2013.02.006

    [28]

    刘勇胜, 胡圣虹, 柳小明, 等. 高级变质岩中Zr、Hf、Nb、Ta的ICP-MS准确分析[J]. 地球科学, 2003, 28(2): 151−156. doi: 10.3321/j.issn:1000-2383.2003.02.006

    Liu Y S, Hu S H, Liu X M, et al. Accurate analysis of Zr, Hf, Nb and Ta in high-grade metamorphic rocks with ICP-MS[J]. Earth Science, 2003, 28(2): 151−156. doi: 10.3321/j.issn:1000-2383.2003.02.006

    [29]

    高会艳. ICP-MS和ICP-AES测定地球化学勘查样品及稀土矿石中铌钽方法体系的建立[J]. 岩矿测试, 2014, 33(3): 312−320. doi: 10.3969/j.issn.0254-5357.2014.03.005

    Gao H Y. Determination systems of Nb and Ta in geochemical samples and rare earth ores by ICP-MS and ICP-AES[J]. Rock and Mineral Analysis, 2014, 33(3): 312−320. doi: 10.3969/j.issn.0254-5357.2014.03.005

    [30]

    童春临, 刘勇胜, 胡圣虹, 等. ICP-MS分析用地质样品制备过程中Nb、Ta等元素的特殊化学行为[J]. 地球化学, 2009, 38(1): 43−52. doi: 10.3321/j.issn:0379-1726.2009.01.005

    Tong C L, Liu Y S, Hu S H, et al. Specific chemical behavior of Nb and Ta in geological sample preparation with PTFE bomb for ICP-MS analysis[J]. Geochimica, 2009, 38(1): 43−52. doi: 10.3321/j.issn:0379-1726.2009.01.005

  • 加载中

(3)

(3)

计量
  • 文章访问数:  662
  • PDF下载数:  39
  • 施引文献:  0
出版历程
收稿日期:  2023-07-31
修回日期:  2024-01-30
录用日期:  2024-02-07
刊出日期:  2024-04-30

目录