中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

颗粒度对喀斯特型铝土矿可见光-近红外光谱特征的影响

高齐云, 周丽, 易泽邦, 陈正山. 颗粒度对喀斯特型铝土矿可见光-近红外光谱特征的影响[J]. 岩矿测试, 2024, 43(2): 234-246. doi: 10.15898/j.ykcs.202308090133
引用本文: 高齐云, 周丽, 易泽邦, 陈正山. 颗粒度对喀斯特型铝土矿可见光-近红外光谱特征的影响[J]. 岩矿测试, 2024, 43(2): 234-246. doi: 10.15898/j.ykcs.202308090133
GAO Qiyun, ZHOU Li, YI Zebang, CHEN Zhengshan. Effect of Granularity on the Characteristic Visible-Near Infrared Spectra of Karst-Type Bauxite[J]. Rock and Mineral Analysis, 2024, 43(2): 234-246. doi: 10.15898/j.ykcs.202308090133
Citation: GAO Qiyun, ZHOU Li, YI Zebang, CHEN Zhengshan. Effect of Granularity on the Characteristic Visible-Near Infrared Spectra of Karst-Type Bauxite[J]. Rock and Mineral Analysis, 2024, 43(2): 234-246. doi: 10.15898/j.ykcs.202308090133

颗粒度对喀斯特型铝土矿可见光-近红外光谱特征的影响

  • 基金项目: 国家自然科学基金项目(42003066)
详细信息
    作者简介: 高齐云,硕士研究生,主要研究方向为高光谱地学应用。E-mail:1035915893@qq.com
    通讯作者: 陈正山,博士,地质高级工程师,主要研究方向为矿物岩石矿床。E-mail:chenzhengshanzy@163.com
  • 中图分类号: O657.33;P618.45

Effect of Granularity on the Characteristic Visible-Near Infrared Spectra of Karst-Type Bauxite

More Information
  • 岩矿反射光谱是智能矿山岩矿智能感知技术以及遥感信息识别的重要参考依据,由于地物表面粗糙度对反射光谱的影响取决于粗糙高度值与波长关系对电磁波传播的影响,因此颗粒度是影响岩石和矿物反射光谱特征的重要因素之一。喀斯特型铝土矿在中国分布广泛,目前有关铝土矿的反射光谱基础数据还非常匮乏。为了探究颗粒度对喀斯特型铝土矿反射光谱的影响规律,本文选取贵州省修文县小山坝喀斯特型铝土矿为研究对象,采用地物光谱仪测试不同颗粒度铝土矿(铝土岩)样品的可见光-近红外反射光谱,并结合铝土矿(铝土岩)主量元素和矿物组成分析讨论铝土矿与铝土岩的光谱差异。结果表明:小山坝铝土矿(铝土岩)由于矿物组成的不同而呈现显著不同的光谱特征,其中铝土矿的反射光谱特征主要与一水硬铝石一致,在1400nm和1800nm波长处有明显的波谷特征,由OH振动谱带所致;铝土岩的反射光谱特征主要与高岭石一致,在1400nm、1900nm、2160nm和2200nm波长处有显著的波谷特征,分别由OH倍频合频、H2O的振动谱带以及Al-OH基团拉伸和弯曲振动的合频所致,且在2160~2200nm波段呈双吸收峰特征。此外,不同颗粒度铝土矿(铝土岩)的整体反射率均较高,最高超过28%,且变化趋势基本相同。随着颗粒度从<0.04mm增加到3mm,铝土矿和铝土岩的反射率均逐渐减小,且铝土矿特征波谷的整体吸收强度相对稳定,而铝土岩特征波谷的吸收强度呈逐渐增大的趋势。本文研究认为可采用小颗粒度的粉末样品在1800nm、1900nm、2160nm和2200nm波长处的特征光谱进行铝土矿和铝土岩的区分。

  • 加载中
  • 图 1  小山坝铝土矿区地质简图与样品采样点(根据陈群等37改编)

    Figure 1. 

    图 2  不同颗粒度铝土矿(铝土岩)的粉状样品

    Figure 2. 

    图 3  铝土矿(铝土岩)反射光谱测试原理示意图

    Figure 3. 

    图 4  相同颗粒度下不同铝土矿(铝土岩)样品的反射光谱曲线

    Figure 4. 

    图 5  颗粒度对铝土矿(铝土岩)在1400nm波长处反射率变化的影响

    Figure 5. 

    图 6  不同颗粒度铝土矿(铝土岩)反射光谱曲线

    Figure 6. 

    图 7  不同铝土矿(铝土岩)样品的XRD分析谱图

    Figure 7. 

    表 1  X射线荧光光谱分析小山坝铝土矿(铝土岩)主量元素含量测定结果

    Table 1.  Major element content of Xiaoshanba bauxite (bauxite-bearing rock) determined by XRF

    主量元素 各样品主量元素含量(%)
    XSB-1 XSB-2 XSB-3 XSB-4 XSB-5 XSB-6
    SiO2 4.48 9.78 9.59 4.32 41.68 43.65
    Al2O3 75.62 69.22 71.04 76.55 39.96 38.38
    Fe2O3 0.76 0.87 0.76 0.73 0.69 0.61
    MgO 0.25 0.52 0.56 0.26 0.98 0.70
    CaO 0.20 0.15 0.13 0.11 0.17 0.17
    Na2O 0.05 0.07 0.05 0.04 0.10 0.05
    K2O 0.58 1.46 1.38 0.59 0.49 0.61
    MnO 0.008 0.007 0.009 0.008 0.006 0.006
    P2O5 0.452 0.315 0.188 0.141 0.059 0.056
    TiO2 3.305 4.131 2.634 3.141 2.259 1.883
    S 0.034 0.042 0.006 0.062 0.002 0.182
    LOI(烧失量) 14.14 13.04 13.22 14.10 13.29 13.30
    合计 99.88 99.61 99.55 100.05 99.69 99.59
    Al/Si比值 16.88 7.08 7.41 17.72 0.96 0.88
    下载: 导出CSV
  • [1]

    刘善军, 王东, 毛亚纯, 等. 智能矿山中的岩矿光谱智能感知技术与研究进展[J]. 金属矿山, 2021(7): 1−15.

    Liu S J, Wang D, Mao Y C, et al. Intelligent spectrum sensing technology and research progress of rock and ore in intelligent mine[J]. Metal Mine, 2021(7): 1−15.

    [2]

    张瑞新, 毛善君, 赵红泽, 等. 智慧露天矿山建设基本框架及体系设计[J]. 煤炭科学技术, 2019, 47(10): 1−23.

    Zhang R X, Mao S J, Zhao H Z, et al. Framework and structure design of system construction for intelligent open-pit mine[J]. Coal Science and Technology, 2019, 47(10): 1−23.

    [3]

    刘新星, 张弘, 张娟, 等. 基于红外光谱技术研究内蒙古乌奴格吐山斑岩铜钼矿蚀变和矿化特征[J]. 岩矿测试, 2021, 40(1): 121−133.

    Liu X X, Zhang H, Zhang J, et al. A study on alteration mineral assemblages and mineralization characteristics of a Wunugetushan porphyry copper-molybdenum deposit in Inner Mongolia, China based on infrared spectroscopy[J]. Rock and Mineral Analysis, 2021, 40(1): 121−133.

    [4]

    张永磊, 陶奇, 何宏平, 等. 近红外光谱对岩矿表面黏土矿物覆层的响应[J]. 地球化学, 2023, 52(1): 41−52.

    Zhang Y L, Tao Q, He H P, et al. Response of near-infrared spectra to clay coatings on mineral surface[J]. Geochimica, 2023, 52(1): 41−52.

    [5]

    郭东旭, 刘晓, 张海兰, 等. 基于红外光谱技术研究云南普朗斑岩铜矿的蚀变和矿化特征[J]. 岩矿测试, 2021, 40(5): 698−709.

    Guo D X, Liu X, Zhang H L, et al. The infrared spectroscopy characteristics of alteration and mineralization in the porphyry copper deposit in Pulang, Yunnan Province[J]. Rock and Mineral Analysis, 2021, 40(5): 698−709.

    [6]

    张博, 司庆红, 苗培森, 等. 基于近红外岩心光谱扫描技术研究鄂尔多斯盆地彭阳铀矿床矿物分布特征[J]. 岩矿测试, 2022, 41(5): 733−743.

    Zhang B, Si Q H, Miao P S, et al. Mineral distribution characteristics of the Pengyang uranium deposit based on near infrared core spectral scanning technology[J]. Rock and Mineral Analysis, 2022, 41(5): 733−743.

    [7]

    代晶晶, 王登红, 代鸿章, 等. 川西甲基卡锂矿基地典型岩石及矿物反射波谱特征研究[J]. 岩矿测试, 2018, 37(5): 507−517.

    Dai J J, Wang D H, Dai H Z, et al. Reflectance spectral characteristics of rocks and mineral in Jiajika lithium deposits in West Sichuan[J]. Rock and Mineral Analysis, 2018, 37(5): 507−517.

    [8]

    代晶晶, 王登红, 令天宇. 基于地面反射波谱技术的锂含量定量反演研究[J]. 遥感技术与应用, 2019, 34(5): 992−997.

    Dai J J, Wang D H, Ling T Y. Quantitative estimation of content of lithium using reflectance spectroscopy[J]. Remote Sensing Technology and Application, 2019, 34(5): 992−997.

    [9]

    韩海辉, 任广利, 张转, 等. 北山方山口地区典型蚀变岩矿的光谱特征研究[J]. 西北地质, 2018, 51(4): 263−273.

    Han H H, Ren G L, Zhang Z, et al. Spectral characteristics of typical altered rocks and minerals from Fangshankou area in Beishan[J]. Northwestern Geology, 2018, 51(4): 263−273.

    [10]

    Tan W, Qin X R, Liu J, et al. Visible/near infrared reflectance (VINR) spectral features of ion-exchangeable rare earth elements hosted by clay minerals: Potential use for exploration of regolith-hosted REE deposits[J]. Applied Clay Science, 2021, 215: 106320. doi: 10.1016/j.clay.2021.106320

    [11]

    Tan W, Qin X R, Liu J, et al. Feasibility of visible short-wave infrared reflectance spectroscopy to characterize regolith-hosted rare earth element mineralization[J]. Economic Geology, 2022, 117(2): 495−508. doi: 10.5382/econgeo.4877

    [12]

    Turner D J, Rivard B, Groat L A. Visible and short-wave infrared reflectance spectroscopy of selected REE-bearing silicate minerals[J]. American Mineralogist: Journal of Earth and Planetary Materials, 2018, 103(6): 927−943. doi: 10.2138/am-2018-6195

    [13]

    Amer R, El Mezayen A, Hasanein M. ASTER spectral analysis for alteration minerals associated with gold mineralization[J]. Ore Geology Reviews, 2016, 75: 239−251. doi: 10.1016/j.oregeorev.2015.12.008

    [14]

    燕守勋, 张兵, 赵永超, 等. 矿物与岩石的可见-近红外光谱特性综述[J]. 遥感技术与应用, 2003, 18(4): 191−201.

    Yan S X, Zhang B, Zhao Y C, et al. Summarizing the vis-NIR spectra of minerals and rocks[J]. Remote Sensing Technology and Application, 2003, 18(4): 191−201.

    [15]

    盛洁, 刘展, 曾齐红, 等. 基于高光谱的砂岩露头孔隙度估算方法[J]. 红外与毫米波学报, 2018, 37(6): 775−783, 789.

    Sheng J, Liu Z, Zeng Q H, et al. Porosity estimation method in sandstone outcrop based on hyper-spectrum[J]. Journal of Infrared and Millimeter Waves, 2018, 37(6): 775−783, 789.

    [16]

    王润生, 熊盛青, 聂洪峰, 等. 遥感地质勘查技术与应用研究[J]. 地质学报, 2011, 85(11): 1699−1743.

    Wang R S, Xiong S Q, Nie H F, et al. Remote sensing technology and its application geological exploration acta[J]. Acta Geologica Sinica, 2011, 85(11): 1699−1743.

    [17]

    甘甫平, 王润生, 马蔼乃, 等. 光谱遥感岩矿识别基础与技术研究进展[J]. 遥感技术与应用, 2002, 17(3): 140−147.

    Gang F P, Wang R S, Ma A N, et al. The development and tendency of both basis and techniques of discrimination for minerals and rocks using spectral remote sensing data[J]. Remote Sensing Technology and Application, 2002, 17(3): 140−147.

    [18]

    汪金花, 曹兰杰, 白洋, 等. 铁尾矿粒径和湿度因子对高光谱特征参量影响[J]. 矿产综合利用, 2019, 40(2): 128−133.

    Wang J H, Cao L J, Bai Y, et al. Influence of iron tailings’ particle size and humidity factor on hyperspectral characteristic parameters[J]. Multipurpose Utilization of Mineral Resources, 2019, 40(2): 128−133.

    [19]

    王润生. 遥感地质技术发展的战略思考[J]. 国土资源遥感, 2008(1): 1−12, 42.

    Wang R S. On the development strategy of remote sensing technology in geology[J]. Remote Sensing for Land & Resources, 2008(1): 1−12, 42.

    [20]

    闫柏琨, 陈伟涛, 王润生, 等. 基于Hapke模型的矿物红外发射光谱随粒度与发射角的变异规律[J]. 地球科学——中国地质大学学报, 2009, 34(6): 946−954. doi: 10.3799/dqkx.2009.108

    Yan B K, Chen W T, Wang R S, et al. Variation law of mineral emissivity spectra with mineral granularity and emission angle based on Hapke model[J]. Earth Science—Journal of China University of Geosciences, 2009, 34(6): 946−954. doi: 10.3799/dqkx.2009.108

    [21]

    Salisbury J W, Wald A. The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals[J]. Icarus, 1992, 96(1): 121−128. doi: 10.1016/0019-1035(92)90009-V

    [22]

    Okin G S, Painter T H. Effect of grain size on remotely sensed spectral reflectance of sandy desert surfaces[J]. Remote Sensing of Environment, 2004, 89(3): 272−280. doi: 10.1016/j.rse.2003.10.008

    [23]

    杨柏林, 王兴理, 王忠圣. 岩石和矿物的反射光谱特征及其应用[J]. 地球化学, 1987(1): 89−96.

    Yang B L, Wang X L, Wang Z S. Reflective spectrum features of rocks and ores and their application[J]. Geochimica, 1987(1): 89−96.

    [24]

    王东, 刘善军, 祁玉馨, 等. 颗粒度对鞍山式铁矿反射光谱特征的影响研究[J]. 光谱学与光谱分析, 2021, 41(5): 1513−1518.

    Wang D, Liu S J, Qi Y X, et al. Effect of particle size on reflectance spectra of Anshan iron ore[J]. Spectroscopy and Spectral Analysis, 2021, 41(5): 1513−1518.

    [25]

    刘海琪, 刘善军, 丁瑞波. 颗粒度对高品位赤铁矿可见光-近红外光谱的影响研究[J]. 金属矿山, 2022(4): 158−162.

    Liu H Q, Liu S J, Ding R B. Effect of particle size on visible-near infrared spectral of high grade Hematite[J]. Metal Mine, 2022(4): 158−162.

    [26]

    王延霞, 吴见, 周亮广, 等. 不同粒度条件下矿物光谱变化分析[J]. 光谱学与光谱分析, 2015, 35(3): 803−808.

    Wang Y X, Wu J, Zhou L G, et al. Mineral spectrum change analysis under the conditions of different particle size[J]. Spectroscopy and Spectral Analysis, 2015, 35(3): 803−808.

    [27]

    杨恩, 王世博, 葛世荣. 典型煤系岩石的可见-近红外光谱特征研究[J]. 工矿自动化, 2019, 45(3): 45−51, 89.

    Yang E, Wang S B, Ge S R. Research on visible-near infrared spectrum features of typical coal measures rocks[J]. Industry and Mine Automation, 2019, 45(3): 45−51, 89.

    [28]

    张超, 刘善军, 易文华, 等. 颗粒度对不同煤种可见光-近红外光谱的影响[J]. 光谱学与光谱分析, 2022, 42(12): 3858−3863.

    Zhang C, Liu S J, Yi W H, et al. Effect of granularity on the characteristics of visible-near infrared spectra of different coal particles[J]. Spectroscopy and Spectral Analysis, 2022, 42(12): 3858−3863.

    [29]

    Zhuang Y, Zhang H, Ma P, et al. Visible and near-infrared reflectance spectra of igneous rocks and their powders[J]. Icarus, 2023, 391: 115346. doi: 10.1016/j.icarus.2022.115346

    [30]

    王庆飞, 刘学飞, 杨淑娟, 等. 喀斯特型铝土矿是如何形成的?[J]. 地球科学, 2022, 47(10): 3880−3881.

    Wang Q F, Liu X F, Yang S J, et al. How is karst bauxite formed?[J]. Earth Science, 2022, 47(10): 3880−3881.

    [31]

    杜远生, 余文超. 沉积型铝土矿的陆表淋滤成矿作用: 兼论铝土矿床的成因分类[J]. 古地理学报, 2020, 22(5): 812−826.

    Du Y S, Yu W C. Subaerial leaching process of sedimentary bauxite and the discussion on classifications of bauxite deposits[J]. Journal of Palaeogeography, 2020, 22(5): 812−826.

    [32]

    张生, 何卫军, 文明, 等. 近红外光谱分析方法在桂西地区沉积型铝土矿找矿中的研究[J]. 化工矿产地质, 2023, 45(1): 58-65.

    Zhang S, He W J, Wen M, et al. Study on near infrared spectroscopy in sedimentary bauxite in Western Guangxi[J]. Geology of Chemical Minerals, 2022, 45(4): 58-65.

    [33]

    Thorsos E I. The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum[J]. The Journal of Acoustical Society of America, 1988, 83(1): 78−92. doi: 10.1121/1.396188

    [34]

    徐林刚, 孙莉, 孙凯. 中国铝土矿的成矿规律、关键科学问题与研究方法[J]. 矿床地质, 2023, 42(1): 22−40.

    Xu L G, Sun L, Sun K. Metallogenic regularity, key scientific problems and research methods of bauxite in China[J]. Mineral Deposits, 2023, 42(1): 22−40.

    [35]

    叶霖, 程曾涛, 潘自平. 贵州修文小山坝铝土矿中稀土元素地球化学特征[J]. 矿物岩石地球化学通报, 2007, 26(3): 228−233.

    Ye L, Cheng Z T, Pan Z P. The REE geochemical characteristics of the Xiaoshanba bauxite deposit, Guizhou[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2007, 26(3): 228−233.

    [36]

    兰永文, 王洪雨, 栗欢欢. 贵州修文小山铝土矿床地质特征及其成因探讨[J]. 西部探矿工程, 2015, 27(8): 171−175.

    Lan Y W, Wang H Y, Li H H. Geological characteristics and genesis of Xiaoshan bauxite deposit in Xiuwen, Guizhou[J]. West-China Exploration Engineering, 2015, 27(8): 171−175.

    [37]

    陈群, 戴晓燕, 梁鹏, 等. 贵州省修文县石炭系小山坝铝土矿矿床地质特征[J]. 贵州地质, 2019, 36(4): 316−323.

    Chen Q, Dai X Y, Liang P, et al. Geological characteristics of Xiaoshanba bauxite deposit in carboniferous system of Xiuwen, Guizhou[J]. Guizhou Geology, 2019, 36(4): 316−323.

    [38]

    窦增文. 西南地区某高泥堆积型铝土矿选矿试验研究[J]. 金属矿山, 2022(7): 193−197.

    Dou Z W. Experimental study on beneficiation of a high mud accumulation type bauxite in southwestern district[J]. Metal Mine, 2022(7): 193−197.

    [39]

    黄国智, 方启学, 石伟, 等. 放粗铝土矿选矿精矿粒度的可行性研究[J]. 轻金属, 2000(7): 7−10.

    Huang G Z, Fang Q X, Shi W, et al. Feasibility study of enlarging the coarseness of bauxite concentrate[J]. Light Metals, 2000(7): 7−10.

    [40]

    李沛刚, 王登红, 赵芝, 等. 贵州大竹园铝土矿矿床地质、地球化学与成矿规律[M]. 北京: 科学出版社, 2014: 1-217.

    Li P G, Wang D H, Zhao Z, et al. Geology, geochemistry and metallogenic regularity of Dazhuyuan bauxite deposit in Guizhou Province[M]. Beijing: Science Press, 2014: 1-217.

    [41]

    曹信禹. 岩溶堆积型铝土矿工业指标的初步探讨[J]. 轻金属, 1984(9): 1−4.

    Cao X Y. Preliminary discussion on industrial index of karst accumulation bauxite[J]. Light Metals, 1984(9): 1−4.

    [42]

    秦效荣, 姚玉增, 何宏平, 等. 广东梅州花岗岩风化壳剖面的可见光-短波红外反射光谱特征及其对风化强度的指示[J]. 地球化学, 2020, 49(4): 422−434.

    Qin X R, Yao Y Z, He H P, et al. Visible to shortwave-infrared spectroscopic characteristics and weathering intensity indicators of a weathering-crust-type REE deposit in granite bedrock, from Meizhou, Guangdong Province[J]. Geochimica, 2020, 49(4): 422−434.

    [43]

    代晶晶, 王润生. 常见透明矿物类波谱特征研究综述[J]. 地质科技情报, 2013, 32(2): 8−14.

    Dai J J, Wang R S. Spectral characteristics of typical transparent mineral groups[J]. Geological Science and Technology Information, 2013, 32(2): 8−14.

    [44]

    Clark R N. Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy[M]//Manual of Remote Sensing. New York: Remote Sensing for the Earth Sciences, 1999: 3–58.

    [45]

    Vernazza P, Carry B, Emery J, et al. Mid-infrared spectral variability for compositionally similar asteroids: Implications for asteroid particle size distributions[J]. Icarus, 2010, 207(2): 800−809. doi: 10.1016/j.icarus.2010.01.011

  • 加载中

(7)

(1)

计量
  • 文章访问数:  926
  • PDF下载数:  66
  • 施引文献:  0
出版历程
收稿日期:  2023-08-09
修回日期:  2024-03-12
录用日期:  2024-03-16
刊出日期:  2024-04-30

目录