Semi-Quantitative Analysis of Uranium Content Distribution Ratio in a Sandstone-Type Uranium Deposit in Songliao Basin
-
摘要:
钱家店铀矿是位于松辽盆地南部的复成因砂岩型铀矿,受表生淋滤、辉绿岩中低温热液和深部油气等多流体影响,目前铀矿物赋存状态尚有一定争议,铀在矿石内不同矿物中的配分尚不明确。为了进一步明确铀赋存状态和在不同矿物中的配分,计算钱家店矿石中不同矿物中铀的配分比例,本文运用岩矿鉴定、铀化学逐级提取、电子探针和激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)微区原位分析技术开展综合测试分析。明确了钱家店铀矿物的赋存状态,认为钱家店铀矿物以吸附态为主,约占总铀含量的80%,结合态铀矿物或含铀矿物约占比20%。其中吸附态铀矿物主要富集在方解石等碳酸盐矿物中,占总铀含量的47.86%,其次是在黏土矿物中占17.94%,在铁锰氧化物矿物中占12.21%。独立铀矿物是与黄铁矿密切共生的沥青铀矿为主,约占铀总含量的9.07%,另有少量含钛铀矿物和铀石约占5.08%。这种矿石中各碎屑组分中铀的占比量化研究,为矿床地浸开采及资源量计算提供依据。
Abstract:The Qianjiadian uranium deposit is a complex-metamorphic sandstone-type uranium mine located in the southern part of the Songliao Basin. To determine the state of uranium mineralization and its partitioning in different minerals, petrographic identification, uranium chemical step-by-step extraction, electron probe microanalysis and laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) were used. The results show that Qianjiadian uranium minerals are predominantly in adsorbed state, accounting for about 80% of the total uranium content, of which 47.86% is in carbonate minerals, such as calcite, 17.94% in clay minerals, and 12.21% in iron and manganese oxides minerals. Combined or uranium-bearing minerals account for approximately 20% of the total uranium content, of which stand-alone uranium minerals are dominated by pitchblende uranium ore, which accounts for approximately 9.07% of the total uranium content, and a small amount of titanium-bearing uranium minerals and uraninite, which accounts for approximately 5.08%.
-
-
表 1 钱家店铀矿床采集样品信息
Table 1. Information of samples collected from Qianjiadian uranium deposit
序号 样品编号 岩性 采样井号 铀含量
(µg/g)采样深度
(m)1 Q2019-26 灰白色中砂岩 Q4-04-07 240 402.0 2 Q2019-28 灰色炭质条带中砂岩 Q4-04-07 70 433.0 3 Q2019-37 红色泥质砂岩,致密 Q4-45-01 160 316.8 4 Q2019-48 杂色泥质砂岩,致密 Q2-WT-4 140 361.2 5 Q2019-49 含炭屑,杂色砾岩 Q2-WT-4 120 361.9 6 Q2019-50 灰白色疏松砂岩 Q2-WT-4 90 362.1 7 Q2019-51 灰色泥岩 Q3-27-04 145 387.0 8 Q2019-52 灰色中砂岩 Q3-27-04 110 387.2 9 Q2021-115 白色细砂岩,疏松 Q3-39-08 200 339.8 10 Q2021-143 杂色细砂岩,含碳屑 QC105 225 231.8 11 Q2021-151 浅红灰色中砂岩 QC43 100 527.9 12 Q2021-167 灰绿色细砂岩,含泥砾 QC100 150 344.3 13 Q2021-170 灰绿色泥质粉砂岩 QC100 90 347.5 表 2 砂岩型铀矿逐级化学提取实验步骤
Table 2. Experimental steps for stepwise chemical extraction of sandstone-type uranium deposit
提取步骤 铀赋存状态 样品处理试剂 萃取条件 振荡时间(h) 温度(℃) 1 水溶态 20mL去离子水 24 20 2 碳酸盐吸附态 1mol/L乙酸钠+1mol/L乙酸(pH=4.75) 24 20 3 铁锰氧化物吸附态 0.04mol/L盐酸氢胺+25%乙酸(pH=2) 3 90 4 硫化物及有机质结合态 30%双氧水+0.2mol/L硝酸(pH=2) 3 90 30%双氧水+3.2mol/L乙酸铵(pH=2) 3 90 5 残渣态 残渣600℃灰化后双氧水溶解 — — 表 3 钱家店铀矿石逐级化学提取占比
Table 3. Gradual chemical extraction fraction ratio of Qianjiadian uranium ores
样品编号 矿石岩性 水溶态占比
(%)碳酸盐吸附态占比
(%)铁锰氧化物吸附态占比
(%)硫化物及有机质结合态占比
(%)残渣态占比
(%)Q2019-26 灰白色中砂岩 12.10 56.95 1.58 4.97 24.39 Q2019-37 红色泥质砂岩 2.81 54.77 3.35 12.80 26.28 Q2019-48 杂色泥质砂岩 3.60 75.49 0.95 8.24 11.72 Q2019-49 含炭屑杂色砾岩 39.66 40.48 2.28 3.38 14.20 Q2021-115 含炭屑杂色砂岩 33.46 35.51 28.13 0.76 2.14 Q2021-151 浅红灰色中砂岩 24.92 23.96 40.49 3.84 6.79 平均占比 19.43 47.86 12.80 5.66 14.25 表 4 钱家店铀矿物电子探针成分分析结果
Table 4. Composition of uranium minerals measured by electron probe microanalyzer in Qianjiadian
样品编号 Na2O
(%)SiO2
(%)Al2O3
(%)TiO2
(%)FeO
(%)CaO
(%)K2O
(%)UO2
(%)PbO
(%)P2O5
(%)总量
(%)矿物类型 Q2019-26 0.420 1.141 0.044 2.911 0.062 2.612 0 64.555 0.000 2.225 74.410 沥青铀矿 1.318 1.154 0.245 43.995 0.893 1.704 0.347 32.412 0.052 1.773 84.443 含钛铀矿 Q2019-28 0.178 1.185 0.163 31.252 0.960 1.228 0.000 53.206 0.000 1.645 89.996 含钛铀矿 3.068 3.544 0.714 9.108 2.736 1.382 0.963 54.024 0.006 1.729 77.724 含钛铀矿 0.118 4.991 0.164 0.000 0.200 2.993 0.000 43.305 0.000 2.506 54.782 沥青铀矿 Q2019-51 0.050 3.897 2.142 6.926 1.187 4.051 0.000 55.205 0.000 4.781 78.303 含钛铀矿 0.068 10.685 0.453 0.182 1.993 2.502 0.000 63.436 0.000 3.689 83.032 沥青铀矿 0.338 8.368 1.022 0.249 2.845 4.154 0.000 64.080 0.068 5.543 87.025 沥青铀矿 0.249 12.345 1.569 0.017 1.805 4.307 0.000 63.169 0.069 5.096 89.133 沥青铀矿 0.079 15.705 6.26 0.051 2.889 3.32 0.382 48.621 0.007 4.204 83.311 铀石 Q2021-167 0.79 0.682 0.009 0.3 1.51 4.035 0 78.578 0.021 1.394 88.883 沥青铀矿 Q2021-143 0.252 0.674 0.068 0 1.148 4.412 0 68.405 0 2.084 78.333 沥青铀矿 0.7 1.137 0.138 0 0.847 5.186 0 70.828 0.031 2.762 83.298 沥青铀矿 Q2021-170 0.133 9.615 0.171 0.15 7.379 2.315 0 39.428 0.042 5.759 74.047 沥青铀矿 0.528 9.696 0.243 0 5.628 2.347 0 39.506 0.06 6.544 76.032 沥青铀矿 0.525 16.209 2.902 0 9.301 2.599 0 37.89 0.119 6.373 87.170 铀石 表 5 钱家店铀矿石中各矿物UO2配分统计
Table 5. UO2 distribution statistics of various minerals in Qianjiadian uranium ores
赋存状态分类 矿物种类 逐级化学提取铀
(%)矿物含量
(%)铀含量
(%)测试方法 铀的配分
(%)水溶态 岩屑 19.43 6.5 0.012 电子探针 0.07 石英 21.6 0.04 0.79 黑云母 0.96 0.043 LA-ICP-MS 0.04 黏土 14.28 1.37 17.94 钾长石 14.67 0.044 0.59 碳酸盐吸附态 方解石等
碳酸盐47.86 10.3 1.43 电子探针 47.86 铁锰氧化物吸附态 磁铁矿 12.80 0.85 0.036 LA-ICP-MS 0.36 闪锌矿 0.91 0.022 0.23 其他铁锰氧化物 2.49 0.42 逐级化学提取测算 12.21 有机质黄铁矿结合态 黄铁矿 5.66 11.6 0.048 LA-ICP-MS 0.43 有机质 5.64 1.20 逐级化学提取测算 5.23 残渣态 含钛铀矿 14.25 1.83 26.88 电子探针 2.78 沥青铀矿 2.7 59.35 9.07 铀石 0.94 43.25 2.30 独居石 1.42 0.77 扫描电镜 0.06 块磷铝石 0.8 0.13 0.01 磷灰石 0.97 0.18 0.01 锆石 1.54 0.19 LA-ICP-MS 0.02 -
[1] 雷安贵, 付永, 杨松林, 等. 开鲁坳陷钱家店凹陷构造演化与铀成矿[J]. 中国矿业, 2018, 27(1): 125−129. doi: 10.12075/j.issn.1004-4051.2018.S1.038
Lei A G, Fu Y, Yang S L, et al. Structural evolution and uranium mineralization in Qianjiadian area Kailu depression[J]. China Mining Magazine, 2018, 27(1): 125−129. doi: 10.12075/j.issn.1004-4051.2018.S1.038
[2] 金若时, 称银行, 王少轶, 等. 中国北方中新生代含铀盆地类型划分[J]. 地质学报, 2019, 93(7): 1571−1587. doi: 10.19762/j.cnki.dizhixuebao.2019187
Jin R S, Cheng Y H, Wang S Y. Type classification of Mesozoic—Cenozoic uraniferous basins in Northern China[J]. Acta Geologica Sinica, 2019, 93(7): 1571−1587. doi: 10.19762/j.cnki.dizhixuebao.2019187
[3] 夏飞勇. 松辽盆地南部钱家店地区姚家组砂岩物源分析及其构造背景综合研究[D]. 武汉: 中国地质大学(武汉), 2019: 14-39.
Xia F Y. Comprehensive provenance study and tectonic setting of sandstones from the upper Cretaceous Yaojia Formation, Qianjiadian area, Southern Songliao Basin[D]. Wuhan: China University of Geosciences (Wuhan), 2019: 14-39.
[4] 王世亮, 昝国军, 陈泽亚, 等. 钱家店铀矿床沉积特征及其与铀成矿的关系[J]. 特种油气藏, 2014, 21(4): 73−75. doi: 10.3969/j.issn.1006-6535.2014.04.017
Wang S L, Zan G J, Chen Z Y, et al. Sedimentary features of uranium deposit in Qianjiadian and its relationship with uranium mineralization[J]. Special Oil & Gas Reservoirs, 2014, 21(4): 73−75. doi: 10.3969/j.issn.1006-6535.2014.04.017
[5] 宫文杰, 张振强, 于文斌, 等. 松辽盆地地浸砂岩型铀成矿铀源分析[J]. 世界核地质科学, 2010, 27(1): 25−30. doi: 10.3969/j.issn.1672-0636.2010.01.005
Gong W J, Zhang Z Q, Yu W B, et al. Analysis of uranium sources in-situ leachable sandstone-type uranium deposit in Songliao Basin[J]. World Nuclear Geoscience, 2010, 27(1): 25−30. doi: 10.3969/j.issn.1672-0636.2010.01.005
[6] 称银行, 张天福, 曾威, 等. 中国北方中新生代盆地砂岩型铀超常富集的驱动力[J]. 大地构造与成矿学, 2020, 44(4): 590−606. doi: 10.16539/j.ddgzyckx2020.04.004
Cheng Y H, Zhang T F, Zeng W, et al. Driving forces for sandstone-type uranium super-enrichment in Meso—Cenozoic Basins, North China[J]. Geotectonica et Metallogenia, 2020, 44(4): 590−606. doi: 10.16539/j.ddgzyckx2020.04.004
[7] 吴仁贵, 徐喆, 宫文杰, 等. 松辽盆地白兴吐铀矿床成因讨论[J]. 铀矿地质, 2012, 28(3): 142−147. doi: 10.3969/j.issn.1000-0658.2012.03.003
Wu R G, Xu Z, Gong W J, et al. Discussion on the genesis of Baixintu uranium deposit in Sonliao Basin[J]. Uranium Geology, 2012, 28(3): 142−147. doi: 10.3969/j.issn.1000-0658.2012.03.003
[8] 贾俊民, 荣辉, 焦养泉, 等. 松辽盆地钱家店铀矿床中碳酸盐胶结物赋存状态及其与铀成矿关系[J]. 地球科学, 2018, 43(S2): 149−161. doi: 10.3799/dqkx.2018.115
Jia J M, Rong H, Jiao Y Q, et al. Occurrence of carbonate cements and relationship between carbonate cementation and uranium mineralization of Qianjiadian uranium deposit, Songliao Basin[J]. Earth Science, 2018, 43(S2): 149−161. doi: 10.3799/dqkx.2018.115
[9] 吴仁贵,蔡建芳,于振清,等. 松辽盆地白兴吐铀矿床热液蚀变及物质组成研究[J]. 铀矿地质, 2011, 27(2): 74−80. doi: 10.3969/j.issn.1000-0658.2011.02.003
Wu R G, Cai J F, Yu Z Q, et al. The hydrothermal alteration and mineral composition of Baixintu uranium deposit in Sonliao Basin[J]. Uranium Geology, 2011, 27(2): 74−80. doi: 10.3969/j.issn.1000-0658.2011.02.003
[10] 王苗. 松辽盆地钱家店铀矿成矿热流体作用研究[D]. 西安: 西北大学, 2022: 35-55.
Wang M. Study on metallogenic hydrothermal process of Qianjiadian uranium deposit in the Songliao Basin[D]. Xi’an: Northwest University, 2022: 35-55.
[11] Cheng Y H, Wang S Y, Zhang T F, et al. Regional sandstone-type uranium mineralization rooted in Oligo—Miocene tectonic inversion in the Songliao Basin, NE China[J]. Gondwana Research: International Geoscience Journal, 2020, 88(1): 88−105.
[12] Cheng Y H, Wang S Y, Jin R S, et al. Global Miocene tectonics and regional sandstone-style uranium mineralization[J]. Ore Geology Reviews, 2019, 106: 238−250. doi: 10.1016/j.oregeorev.2019.02.003
[13] 寸小妮, 吴柏林, 张洪深, 等. 鄂尔多斯盆地大营铀矿铀的赋存状态研究[J]. 西北地质, 2016, 49(2): 198−212. doi: 10.3969/j.issn.1009-6248.2016.02.019
Cun X N, Wu B L, Zhang H S, et al. Study on uranium occurrence state of daying sandstone-type uranium deposits in Ordos Basin[J]. Northwestern Geology, 2016, 49(2): 198−212. doi: 10.3969/j.issn.1009-6248.2016.02.019
[14] 蔡宁宁. 松辽盆地XX地区砂岩型铀矿铀赋存状态及其成矿意义[D]. 贵阳: 贵州大学, 2022: 29-42.
Cai N N. Uranium occurrence and metallogenic significance of sandstone type uranium deposit in XX area, Songliao Basin[D]. Guiyang: Guizhou University, 2022: 29-42.
[15] 张明瑜, 郑纪伟, 田时丰, 等. 开鲁坳陷钱家店铀矿床铀的赋存状态及铀矿形成时代研究[J]. 铀矿地质, 2005, 21(4): 213−218. doi: 10.3969/j.issn.1000-0658.2005.04.005
Zhang M Y, Zheng J W, Tian S F, et al. Research on existing state of uranium and uranium ore-formation age at Qianjiadian uranium deposit in Kailu depression[J]. Uranium Geology, 2005, 21(4): 213−218. doi: 10.3969/j.issn.1000-0658.2005.04.005
[16] 吴柏林, 张婉莹, 宋子升, 等. 鄂尔多斯盆地北部砂岩型铀矿铀矿物地质地球化学特征及其成因意义[J]. 地质学报, 2016, 90(12): 3393−3407. doi: 10.3969/j.issn.0001-5717.2016.12.009
Wu B L, Zhang W Y, Song Z S, et al. Geological and geochemical characteristics of uranium minerals in the sandstone-type uranium deposits in the north of Ordos Basin and their genetic significance[J]. Acta Geologica Sinica, 2016, 90(12): 3393−3407. doi: 10.3969/j.issn.0001-5717.2016.12.009
[17] Qi L, Wu B L, Luo J G, et al. Characters and metallogenetic significance of organic matter in coal from the daying sandstone-hosted uranium deposit in the Northern Ordos Basin, China[J]. Minerals, 2023, 13(8): 1002. doi: 10.3390/min13081002
[18] 黄少华, 秦明宽, 刘章月, 等. 松辽盆地西南部钱家店凹陷DL铀矿带铀的赋存形式及成矿时代[J]. 地质论评, 2022, 68(3): 817−830. doi: 10.16509/j.georeview.2022.03.055
Huang S H, Qin M K, Liu Z Y, et al. Uranium occurrence and metallogenic age for the DL uranium mineralized belt in Qianjiadian sag, Southwestern Songliao Basin[J]. Geological Review, 2022, 68(3): 817−830. doi: 10.16509/j.georeview.2022.03.055
[19] 张博, 李建国, 苗培森, 等. 开鲁盆地钱家店铀矿床铀的赋存状态及成因探讨[J]. 华北地质, 2021, 44(2): 40−48. doi: 10.19948/j.12-1471/P.2021.02.06
Zhang B, Li J G, Miao P S. The occurrence state and origin of uranium in Qianjiadian uranium deposit, Kailu Basin[J]. North China Geology, 2021, 44(2): 40−48. doi: 10.19948/j.12-1471/P.2021.02.06
[20] 郝欣. 松辽盆地钱家店砂岩型铀矿成矿特点及其成因分析[D]. 西安: 西北大学, 2020: 25-35.
Hao X. Metallogenic characteristics and genesis of Qianjiadian sandstone-type uranium deposit in the Songliao Basin[D]. Xi’an: Northwest University, 2020: 25-35.
[21] 邓刘敏, 葛祥坤, 刘章月, 等. 松辽盆地西南部DL铀矿带铀赋存状态及矿物组成特征[J]. 铀矿地质, 2021, 37(2): 192−204. doi: 10.3969/j.issn.1000-0658.2021.37.021
Deng L M, Ge X K, Liu Z Y. The Occurrence and mineral composition of uranium ore of DL mineralized zone in Southwestern Songliao Basin[J]. Uranium Geology, 2021, 37(2): 192−204. doi: 10.3969/j.issn.1000-0658.2021.37.021
[22] 汤超, 魏佳林, 肖鹏, 等. 松辽盆地北部砂岩型铀矿铀的赋存状态研究[J]. 矿产与地质, 2017, 31(6): 1009−1016. doi: 10.3969/j.issn.1001-5663.2017.06.001
Tang C, Wei J L, Xiao P, et al. Research on uranium occurrence state of sandstone-type uranium deposit in the Northern Songliao Basin[J]. Mineral Resources and Geology, 2017, 31(6): 1009−1016. doi: 10.3969/j.issn.1001-5663.2017.06.001
[23] 魏佳林, 汤超, 徐增连, 等. 松辽盆地北部龙虎泡地区含铀岩系铀矿物赋存特征[J]. 矿物学报, 2019, 39(6): 709−725. doi: 10.16461/j.cnki.1000-4734.2019.39.076
Wei J L, Tang C, Xu Z L. Characteristics of the occurrence of uranium minerals in U-bearing rocks of the Longhupao region in the Northern Songliao Basin[J]. Acta Mineralogica Sinica, 2019, 39(6): 709−725. doi: 10.16461/j.cnki.1000-4734.2019.39.076
[24] 马晔. 鄂尔多斯盆地杭锦旗砂岩型铀矿铀的赋存状态及铀源探讨[D]. 西安: 西北大学, 2013: 23-40.
Ma Y. The occurrence and provenance of uranium mineral in Hangjinqi area, Ordos Basin[D]. Xi’an: Northwestern University, 2013: 23-40.
[25] 谢惠丽, 焦养泉, 刘章月, 等. 鄂尔多斯盆地北部铀矿床铀矿物赋存状态及富集机理[J]. 地球科学, 2020, 45(5): 1531−1543. doi: 10.3799/dqkx.2019.164
Xie H L, Jiao Y Q, Liu Z Y, et al. Occurrence and enrichment mechanism of uranium ore minerals from sandstone-type uranium deposit, Northern Ordos Basin[J]. Earth Science, 2020, 45(5): 1531−1543. doi: 10.3799/dqkx.2019.164
[26] 王贵, 王强, 苗爱生, 等. 鄂尔多斯盆地纳岭沟铀矿床铀矿物特征与形成机理[J]. 矿物学报, 2017, 37(4): 461−468. doi: 10.16461/j.cnki.1000-4734.2017.04.013
Wang G, Wang Q, Miao A S, et al. Characteristics of uranium minerals in Nalinggou uranium deposit of Ordos Basin and their formation mechanism[J]. Acta Mineralogica Sinica, 2017, 37(4): 461−468. doi: 10.16461/j.cnki.1000-4734.2017.04.013
[27] 丁波, 刘红旭, 许德如, 等. 鄂尔多斯盆地北缘砂岩型铀矿热液改造的铀成矿效应:来自黑云母绿泥石化过程的制约[J]. 地球科学, 2024, 49(2): 625−638. doi: 10.3799/dqkx.2022.336
Ding B, Liu H X, Xu D R, et al. Uranium metallogenic effect of hydrothermal fluid transformation in sandstone type uranium deposits in Northern Ordos Basin: Constraints from the study of biotite chloritization process[J]. Earth Science, 2024, 49(2): 625−638. doi: 10.3799/dqkx.2022.336
[28] 郭亮亮. 钱家店铀矿床中铀矿物的赋存状态、地球化学特征及其对成矿的约束[D]. 北京: 中国地质大学(北京), 2023.
Guo L L. Occurrence and geochemical characteristics of uranium minerals in the Qianjiadian uranium deposit and their constraints on mineralization[D]. Beijing: China University of Geosciences (Beijing), 2023.
[29] 陈振岩, 李清春, 邵建欣, 等. 地浸砂岩型铀矿伴生铼资源开采可行性研究[J]. 自然资源情报, 2023(2): 1−9. doi: 10.3969/j.issn.1674-3709.2023.02.001
Chen Z Y, Li Q C, Shao J X, et al. Feasibility study on the exploitation of rhenium associated with in-situ leaching sandstone type uranium deposit[J]. Natural Resources Information, 2023(2): 1−9. doi: 10.3969/j.issn.1674-3709.2023.02.001
[30] 荣辉, 焦养泉, 吴立群, 等. 松辽盆地南部钱家店铀矿床后生蚀变作用及其对铀成矿的约束[J]. 地球科学, 2016, 41(1): 153−166. doi: 10.3799/dqkx.2016.012
Rong H, Jiao Y Q, Wu L Q, et al. Epigenetic alteration and its constraints on uranium mineralization from the Qianjiadian uranium deposit, Southern Songliao Basin[J]. Earth Science, 2016, 41(1): 153−166. doi: 10.3799/dqkx.2016.012
[31] 夏飞勇, 焦养泉, 荣辉, 等. 松辽盆地南部钱家店铀矿床姚家组砂岩地球化学特征及地质意义[J]. 地球科学, 2019, 44(12): 4235−4251. doi: 10.3799/dqkx.2019.045
Xia F Y, Jiao Y Q, Rong H, et al. Geochemical characteristics and geological implications of sandstones from the Yaojia Formation in Qianjiadian uranium deposit, Southern Songliao Basin[J]. Earth Science, 2019, 44(12): 4235−4251. doi: 10.3799/dqkx.2019.045
[32] 单芝波, 雷安贵, 杨光达, 等. 钱家店铀矿床含矿建造后生改造作用探讨: 来自蚀变特征及地球化学的证据[J]. 地球化学, 2021, 50(4): 398−414. doi: 10.19700/j.0379-1726.2021.04.006
Shan Z B, Lei A G, Yang G D, et al. Discussion on the alteration of the ore-bearing structure and subsequent transformation of the Qianjiadian uranium deposit: Evidence from alteration characteristics and geochemistry[J]. Geochimica, 2021, 50(4): 398−414. doi: 10.19700/j.0379-1726.2021.04.006
[33] Tessier A, Campbell P, Bisson M. Sequential extraction procedure for the speciation of particulate trace mentals[J]. Analytical Chemistry, 1979, 51(7): 844−851. doi: 10.1021/ac50043a017
[34] 尹明, 李家熙. 岩石矿物分析(第四版 第三分册)[M]. 北京: 地质出版社, 2011: 724-728.
Yin M, Li J X. Rock and Mineral Analysis (The fourth edition, Volume Ⅲ)[M]. Beijing: Geological Publishing House, 2011: 724-728.
[35] 张效瑞, 吴柏林, 雷安贵, 等. 砂岩型铀矿成矿期与非成矿期黄铁矿的微区原位Pb同位素识别特征[J]. 岩矿测试, 2022, 41(5): 717−732. doi: 10.15898/j.cnki.11-2131/td.202111300192
Zhang X R, Wu B L, Lei A G, et al. In-situ micro-scale Pb isotope identification characteristics of metallogenic and non-metallogenic pyrites in sandstone-type uranium deposits[J]. Rock and Mineral Analysis, 2022, 41(5): 717−732. doi: 10.15898/j.cnki.11-2131/td.202111300192
-