中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

地质样品铊同位素分析预处理方法优化

柒锦捷, 余红霞, 徐庆鸿, 袁永海, 杨锋, 张惠评. 地质样品铊同位素分析预处理方法优化[J]. 岩矿测试, 2024, 43(2): 213-223. doi: 10.15898/j.ykcs.202311070174
引用本文: 柒锦捷, 余红霞, 徐庆鸿, 袁永海, 杨锋, 张惠评. 地质样品铊同位素分析预处理方法优化[J]. 岩矿测试, 2024, 43(2): 213-223. doi: 10.15898/j.ykcs.202311070174
QI Jinjie, YU Hongxia, XU Qinghong, YUAN Yonghai, YANG Feng, ZHANG Huiping. Optimization of Pretreatment Method for Tl Isotope Analysis of Geological Samples[J]. Rock and Mineral Analysis, 2024, 43(2): 213-223. doi: 10.15898/j.ykcs.202311070174
Citation: QI Jinjie, YU Hongxia, XU Qinghong, YUAN Yonghai, YANG Feng, ZHANG Huiping. Optimization of Pretreatment Method for Tl Isotope Analysis of Geological Samples[J]. Rock and Mineral Analysis, 2024, 43(2): 213-223. doi: 10.15898/j.ykcs.202311070174

地质样品铊同位素分析预处理方法优化

  • 基金项目: 国家重点研发计划项目(2021YFC2900100);广西研究生创新项目(YCBZ2022119)
详细信息
    作者简介: 柒锦捷,硕士研究生,地球化学专业。E-mail:495898865@qq.com
    通讯作者: 袁永海,高级实验师,主要从事原子光谱分析方法研究。E-mail:Hg20109@163.com
  • 中图分类号: O657.63

Optimization of Pretreatment Method for Tl Isotope Analysis of Geological Samples

More Information
  • 铊同位素体系可以示踪天体演化、古环境变化、矿床成因及污染物迁移等地质过程。然而,目前用于铊同位素分析的样品消解和离子交换方法耗时较长,往往需要两周甚至更久;为了提高化学前处理效率,本文采用微波消解法分解样品,以AG1-X8阴离子交换树脂纯化铊,采用多接收器电感耦合等离子体质谱(MC-ICP-MS)测试,仪器的质量歧视用铅同位素标准溶液(NIST SRM981)校正。通过考察消解条件、淋洗曲线和基质效应,结果表明:采用微波消解法,在2mL硝酸-2mL氢氟酸-0.5mL高氯酸的混合酸体系中选用适当的消解程序可以将0.2g土壤标准物质GBW07406消解完全,总耗时不超过2h;利用AG1-X8树脂,上样后,依次以2mL 2mol/L硝酸-1%溴水淋洗6次、2mL超纯水淋洗1次和2mL 0.1mol/L盐酸-6%二氧化硫淋洗5次(收集铊),可有效地纯化铊;常见共存元素的干扰实验结果显示,树脂填充量为2mL时,该淋洗流程所允许上样溶液中含有三价铁和三价铝离子的量分别不应超过2.56mmol和4.90mmol,否则会使铊的回收率降低。将此方法应用于4个地质标准物质中铊同位素比值的测定,ε205TlGSB Tl的精密度(2SD,n=6)均优于0.3;与文献的结果对比显示,标准物质NOD-P-1、GBW07406和GSP-2的ε205Tl差值(ε205TlNIST 997ε205TlGSB Tl)均为0.8,NOD-A-1的ε205Tl差值为0.7,说明方法具有较好的准确性;此外,可以估算标准物质GSB 04-1758-2004相对于NIST 997的ε205Tl值应约等于0.8。

  • 加载中
  • 图 1  铊的淋洗曲线(AG1-X8树脂,100~200目),其中2mol/L硝酸-1%溴水洗脱基体元素,超纯水洗脱残留NO3和BrO,0.1mol/L盐酸-6%二氧化硫收集铊

    Figure 1. 

    图 2  三氧化二铁、氧化钙和三氧化二铝对铊回收率的影响(n=3)

    Figure 2. 

    图 3  铊标准溶液GSB 04-1758-2004测量结果的稳定性(n=40)

    Figure 3. 

    表 1  MC-ICP-MS和ICP-MS仪器主要工作参数

    Table 1.  Main operation conditions of MC-ICP-MS and ICP-MS instruments

    工作参数 设定值
    MC-ICP-MS ICP-MS
    冷却气(Ar)流速(L/min) 16.00 14.95
    辅助气(Ar)流速(L/min) 0.86 0.28
    雾化气(Ar)流速(L/min) 0.05 0.92
    射频功率(W) 1152 1470
    积分时间(s) 4.194 /
    每组测量次数 30 /
    测量组数 1 /
    下载: 导出CSV

    表 2  地质标准物质和同位素标准溶液的详细信息

    Table 2.  Details of geological reference materials and isotope reference solutions

    标准物质编号 样品类型 研制单位 推荐值
    NIST SRM 981 铅同位素标准溶液 美国标准与技术研究院(NIST) / 10μg/mL
    GSB 04-1758-2004 铊标准溶液 中国有色金属及电子材料分析测试中心 1000μg/mL /
    NOD-P-1 铁锰结核 美国地质调查局(USGS) 210±2μg/g 560±6μg/g
    NOD-A-1 铁锰结核 美国地质调查局(USGS) 120±1.0μg/g 846±8.2μg/g
    GBW07406 土壤 中国地质科学院地球物理地球化学勘查研究所 2.2±0.6μg/g 314±25μg/g
    GSP-2 花岗岩 美国地质调查局(USGS) 1.1±0.1μg/g 43±3μg/g
    下载: 导出CSV

    表 3  样品处理微波消解程序

    Table 3.  Microwave digestion procedure for sample pretreatment

    步骤消解温度
    (℃)
    消解功率
    (W)
    加热时间
    (min)
    保持时间
    (min)
    112040055
    215080055
    31901200520
    下载: 导出CSV

    表 4  铊同位素的离子交换流程(2mL AG1-X8树脂,100~200目)

    Table 4.  Chemical purification procedure for Tl isotopes (2mL AG1-X8 resin, 100-200 mesh)

    步骤 淋洗液 淋洗液体积
    (mL)
    淋洗
    次数
    实验目的
    1 0.1mol/L盐酸-6%二氧化硫 1 2 清洗树脂
    2 超纯水 1 2 清洗树脂
    3 2mol/L硝酸-1%溴水 2 2 清洗/平衡树脂
    4 2mol/L硝酸-1%溴水 2 / 装载样品
    5 2mol/L硝酸-1%溴水 2 6 洗脱基质
    6 超纯水 2 1 洗脱NO3和BrO
    7 0.1mol/L盐酸-6%二氧化硫 2 5 收集铊
    下载: 导出CSV

    表 5  不同无机酸种类及用量的消解效果对比(n=3)

    Table 5.  Comparison of digestion effects of different types and volumes of inorganic acids (n=3)

    混合酸体系实验组号混合酸体系各酸用量
    (mL)
    样品消解效果观察铊回收率
    (%)
    硝酸-氢氟酸-
    盐酸-过氧化氢
    1-11+1+1+1有少量不溶白色沉淀84.7
    1-22+2+2+1黄色消解液清澈透亮98.4
    1-35+3+3+1黄色消解液清澈透亮98.6
    硝酸-氢氟酸-
    高氯酸
    2-11+1+0.5有少量不溶白色沉淀81.9
    2-22+2+0.5黄色消解液清澈透亮98.2
    2-35+3+0.5黄色消解液清澈透亮99.0
    下载: 导出CSV

    表 6  消解温度和保持时间的正交试验结果(n=3)

    Table 6.  Orthogonal test results of digestion temperature and holding time (n=3)

    编号 因素水平 铊回收率
    (%)
    消解温度(℃) 时间(min)
    1 180 15 86.6
    2 180 20 93.1
    3 190 15 94.0
    4 190 20 98.2
    5 200 15 97.8
    6 200 20 99.1
    下载: 导出CSV

    表 7  地质标准物质中铊同位素组成的测定结果及文献对比

    Table 7.  Comparison of analytical results of Tl isotope composition in geological reference materials determined by this method and those in the literatures

    标准物质编号 岩性 ε205TlGSB Tl
    (2SD)
    ε205TlNIST 997
    (2SD)
    测量次数
    (n)
    数据来源 ε205Tl差值
    NOD-P-1 铁锰结核 / 3.3±0.7 6 5 0.8
    2.5±0.2 / 6 本文研究
    NOD-A-1 铁锰结核 / 10.7±0.5 6 28 0.7
    10.0±0.3 / 6 本文研究
    GBW07406 土壤 / −2.2±0.2 4 5 0.8
    −3.0±0.2 / 6 本文研究
    GSP-2 花岗岩 / −2.5±0.6 9 4 0.8
    −3.3±0.3 / 6 本文研究
    下载: 导出CSV
  • [1]

    邱啸飞, 卢松山, 谭娟娟, 等. 铊同位素分析技术及其在地学中的应用[J]. 地球科学——中国地质大学学报, 2014, 39(6): 705−715. doi: 10.3799/dqkx.2014.066

    Qiu X F, Lu S S, Tan J J, et al. Advances in Tl isotopic analysis and its geological applications[J]. Earth Science—Journal of China University of Geosciences, 2014, 39(6): 705−715. doi: 10.3799/dqkx.2014.066

    [2]

    Rehkämper M, Halliday A N. The precise measurement of Tl isotopic compositions by MC-ICP-MS: Application to the analysis of geological materials and meteorites[J]. Geochimica et Cosmochimica Acta, 1999, 63: 935−944. doi: 10.1016/S0016-7037(98)00312-3

    [3]

    Nielsen S G, Rehkämper M, Baker J, et al. The precise and accurate determination of thallium isotope compositions and concentrations for water samples by MC-ICP-MS[J]. Chemical Geology, 2004, 204: 109−124. doi: 10.1016/j.chemgeo.2003.11.006

    [4]

    Brett A, Prytulak J, Hammond S J, et al. Thallium mass fraction and stable isotope ratios of sixteen geological reference materials[J]. Geostandards and Geoanalytical Research, 2018, 42: 339−360. doi: 10.1111/ggr.12215

    [5]

    Wang Z Y, Li J, Yin L, et al. A new procedure for separating thallium from geological materials prior to stable isotope ratio determination by MC-ICP-MS[J]. Chemical Geology, 2023, 627: 121457. doi: 10.1016/j.chemgeo.2023.121457

    [6]

    Baker R G A, Schönbächler M, Rehkämper M, et al. The thallium isotope composition of carbonaceous chondrites: New evidence for live 205Pb in the early Solar system[J]. Earth and Planetary Science Letters, 2010, 291: 39−47. doi: 10.1016/j.jpgl.2009.12.044

    [7]

    Wei F, Prytulak J, Baker E B, et al. Identifying Tethys oceanic fingerprint in post-collisional potassium-rich lavas in Tibet using thallium isotopes[J]. Chemical Geology, 2022, 607: 121013. doi: 10.1016/j.chemgeo.2022.121013

    [8]

    Zhou Y T, He H P, Wang J, et al. Stable isotope fractionation of thallium as novel evidence for its geochemical transfer during lead zinc smelting activities[J]. Science of the Total Environment, 2022, 803: 150036. doi: 10.1016/j.scitotenv.2021.150036

    [9]

    Migaszewski Z M, Gałuszka A. Abundance and fate of thallium and its stable isotopes in the environment[J]. Reviews in Environmental Science and Bio/Technology, 2021, 20: 5−30. doi: 10.1007/s11157-020-09564-8

    [10]

    Liu J, Ouyang Q E, Wang L, et al. Quantification of smelter-derived contributions to thallium contamination in river sediments: Novel insights from thallium isotope evidence[J]. Journal of Hazardous Materials, 2022, 424: 127594. doi: 10.1016/j.jhazmat.2021.127594

    [11]

    Liu J, Yuan W, Ouyang Q E, et al. A novel application of thallium isotopes in tracing metal(loid)s migration and related sources in contaminated paddy soils[J]. Science of the Total Environment, 2023, 882: 163404. doi: 10.1016/j.scitotenv.2023.163404

    [12]

    贾彦龙, 肖唐付, 宁曾平, 等. 铊同位素及环境示踪研究进展[J]. 矿物岩石地球化学通报, 2010, 29(3): 311−316. doi: 10.3969/j.issn.1007-2802.2010.03.016

    Jia Y L, Xiao T F, Ning Z P, et al. Thallium isotopes and environmental tracing[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2010, 29(3): 311−316. doi: 10.3969/j.issn.1007-2802.2010.03.016

    [13]

    李志华, 高树林. 泡沫塑料富集-火焰原子荧光光谱法测定土壤及水系沉积物中微量铊[J]. 分析仪器, 2023(3): 45−49. doi: 10.3969/j.issn.1001-232x.2023.03.007

    Li Z H, Gao S L. Determination of trace thallium in soil and stream sediments by foam-enrichment and flame atomic fluorescence spectrometry[J]. Analytical Instruments, 2023(3): 45−49. doi: 10.3969/j.issn.1001-232x.2023.03.007

    [14]

    罗芝雅, 王贵超, 刘荣丽, 等. 过氧化钠熔融-电感耦合等离子体质谱法测定黑钨矿中铊[J]. 冶金分析, 2022, 42(3): 47−51. doi: 10.13228/j.boyuan.issn1000-7571.011563

    Luo Z Y, Wang G C, Liu R L, et al. Determination of thallium in wolstenite by sodium peroxidation-inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2022, 42(3): 47−51. doi: 10.13228/j.boyuan.issn1000-7571.011563

    [15]

    汪浩, 曹静, 袁金华. 分步消解-石墨炉原子吸收光谱法测定土壤中铊的含量[J]. 理化检验(化学分册), 2022, 58(1): 106−109. doi: 10.11973/lhjy-hx202201019

    Wang H, Cao J, Yuan J H. Determination of thallium content in soil by stepwise digestion-graphite furnace atomic absorption spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2022, 58(1): 106−109. doi: 10.11973/lhjy-hx202201019

    [16]

    谢焱鑫, 杨力, 邬宇茜. 电感耦合等离子体质谱法测定环境土壤中的痕量铊及测定干扰的消除[J]. 理化检验(化学分册), 2020, 56(8): 930−932. doi: CNKI:SUN:LHJH.0.2020-08-017

    Xie Y X, Yang L, Wu Y Q. Determination of trace thallium in environmental soil by inductively coupled plasma mass spectrometry and elimination of interference[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2020, 56(8): 930−932. doi: CNKI:SUN:LHJH.0.2020-08-017

    [17]

    Owens J D, Nielsen S G, Horner T J, et al. Thallium-isotopic compositions of euxinic sediments as a proxy for global manganese-oxide burial[J]. Geochimica et Cosmochimica Acta, 2017, 213: 291−307. doi: 10.1016/j.gca.2017.06.041

    [18]

    李建荣, 舒士倡, 张学玲, 等. 微波消解-电感耦合等离子体质谱法测定枸杞中22种痕量元素[J]. 理化检验(化学分册), 2021, 57(3): 278−282. doi: 10.11973/lhjy-hx202103016

    Li J Y, Shu S C, Zhang X L, et al. Determination of 22 trace elements in Lycium barbarum by microwave digestion and inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2021, 57(3): 278−282. doi: 10.11973/lhjy-hx202103016

    [19]

    徐玲珀, 高巧玲. 微波消解-电感耦合等离子体质谱法测定啤酒中8种微量元素[J]. 理化检验(化学分册), 2022, 58(7): 791−794. doi: 10.11973/lhjy-hx202207009

    Xu L P, Gao Q L. Determination of 8 trace elements in beer by microwave digestion and inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2022, 58(7): 791−794. doi: 10.11973/lhjy-hx202207009

    [20]

    文田耀, 时志路, 孙文军, 等. 微波消解-电感耦合等离子体质谱法测定土壤中10种重金属元素[J]. 化学分析计量, 2023, 32(8): 16−19, 29. doi: 10.3969/j.issn.1008-6145.2023.08.004

    Wen T Y, Shi Z L, Sun W J, et al. Determination of 10 heavy metals in soil by microwave digestion and inductively coupled plasma mass spectrometry[J]. Chemical Analytical Metrology, 2023, 32(8): 16−19, 29. doi: 10.3969/j.issn.1008-6145.2023.08.004

    [21]

    肖细炼, 刘杰, 魏立, 等. 微波消解-电感耦合等离子体发射光谱法同时测定生物样品中12种元素的方法[J]. 物探与化探, 2023, 47(3): 739−746. doi: 10.11720/wtyht.2023.1315

    Xiao X L, Liu J, Wei L, et al. Simultaneous determination of 12 elements in biological samples by microwave digestion and inductively coupled plasma emission spectrometry[J]. Geophysical and Geochemical Exploration, 2023, 47(3): 739−746. doi: 10.11720/wtyht.2023.1315

    [22]

    边朋沙, 张硕, 安彩秀, 等. 高压微波消解-电感耦合等离子体质谱(ICP-MS)法测定小米样品中铜铅锌镉铬镍砷[J]. 中国无机分析化学, 2023, 13(5): 420−424. doi: 10.3969/j.issn.2095-1035.2023.05.003

    Bian P S, Zhang S, An C X, et al. Determination of copper, lead, zinc, cadmium, chromium-nickel and arsenic in millet samples by high voltage microwave digestion and inductively coupled plasma mass spectrometry (ICP-MS)[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(5): 420−424. doi: 10.3969/j.issn.2095-1035.2023.05.003

    [23]

    袁永海, 杨锋, 余红霞, 等. 微波消解-多接收电感耦合等离子体质谱高精度测定锶钕同位素组成[J]. 岩矿测试, 2018, 37(4): 356−363. doi: 10.15898/j.cnki.11-2131/td.201707290122

    Yuan Y H, Yang F, Yu H X, et al. High-precision measurement of strontium and neodymium isotopic composition by multi-collector inductively coupled plasma-mass spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2018, 37(4): 356−363. doi: 10.15898/j.cnki.11-2131/td.201707290122

    [24]

    李丽君, 薛静. 微波消解-电感耦合等离子体质谱法测定高岭土中10种微量元素[J]. 岩矿测试, 2022, 41(1): 22−31. doi: 10.15898/j.cnki.11-2131/td.202103240042

    Li L J, Xue J. Determination of 10 trace elements in kaolin by ICP-MS with microwave digestion[J]. Rock and Mineral Analysis, 2022, 41(1): 22−31. doi: 10.15898/j.cnki.11-2131/td.202103240042

    [25]

    樊蕾, 郭晓瑞, 王甜甜, 等. 微波消解-电感耦合等离子体原子发射光谱法测定磷矿石中9种主次元素[J]. 冶金分析, 2023, 43(9): 56−61. doi: 10.13228/j.boyuan.issn1000-7571.012180

    Fan L, Guo X R, Wang T T, et al. Determination of 9 primary and secondary elements in phosphate rock by microwave digestion and inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2023, 43(9): 56−61. doi: 10.13228/j.boyuan.issn1000-7571.012180

    [26]

    Yuan Y H, Shao Y, Yang F, et al. Determination of Se and Te by hydride generation-inductively coupled plasma mass spectrometry after mixed-acid digestion of tungsten ores[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2023, 203: 106664. doi: 10.1016/j.sab.2023.106664

    [27]

    Nielsen S G, Rehkämper M, Prytulak J. Investigation and application of thallium isotope fractionation[J]. Reviews in Mineralogy and Geochemistry, 2017, 82: 759−798. doi: 10.2138/rmg.2017.82.18

    [28]

    张兴超, 刘超, 黄艺, 等. 干法灰化处理对含有机质土壤样品铜同位素测量的影响[J]. 岩矿测试, 2018, 37(4): 347−355. doi: 10.15898/j.cnki.11-2131/td.201803290033

    Zhang X C, Liu C, Huang Y, et al. The effect of dry-ashing method on copper isotopic analysis of soil samples with organic matter[J]. Rock and Mineral Analysis, 2018, 37(4): 347−355. doi: 10.15898/j.cnki.11-2131/td.201803290033

  • 加载中

(3)

(7)

计量
  • 文章访问数:  785
  • PDF下载数:  48
  • 施引文献:  0
出版历程
收稿日期:  2023-11-07
修回日期:  2024-01-11
录用日期:  2024-02-22
刊出日期:  2024-04-30

目录