中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

锂硼同位素MC-ICP-MS分析中的记忆效应研究

唐清雨, 陈露, 田世洪, 胡文洁, 龚迎莉, 字艳梅. 锂硼同位素MC-ICP-MS分析中的记忆效应研究[J]. 岩矿测试, 2024, 43(2): 201-212. doi: 10.15898/j.ykcs.202310260167
引用本文: 唐清雨, 陈露, 田世洪, 胡文洁, 龚迎莉, 字艳梅. 锂硼同位素MC-ICP-MS分析中的记忆效应研究[J]. 岩矿测试, 2024, 43(2): 201-212. doi: 10.15898/j.ykcs.202310260167
TANG Qingyu, CHEN Lu, TIAN Shihong, HU Wenjie, GONG Yingli, ZI Yanmei. A Study on Memory Effects in Lithium and Boron Isotope Analysis Using MC-ICP-MS[J]. Rock and Mineral Analysis, 2024, 43(2): 201-212. doi: 10.15898/j.ykcs.202310260167
Citation: TANG Qingyu, CHEN Lu, TIAN Shihong, HU Wenjie, GONG Yingli, ZI Yanmei. A Study on Memory Effects in Lithium and Boron Isotope Analysis Using MC-ICP-MS[J]. Rock and Mineral Analysis, 2024, 43(2): 201-212. doi: 10.15898/j.ykcs.202310260167

锂硼同位素MC-ICP-MS分析中的记忆效应研究

  • 基金项目: 东华理工大学科研基金(自然科学类)项目(DHBK2020012);自然资源部离子型稀土资源与环境重点实验室开放基金项目(2022IRERE102);中国铀业有限公司-东华理工大学核资源与环境国家重点实验室联合创新基金项目(2022NRE-LH-05);自然资源部深地科学与探测技术实验室开放课题(Sino Probe Lab 202217)
详细信息
    作者简介: 唐清雨,硕士研究生,主要从事同位素地球化学研究。E-mail:1307614831@qq.com
    通讯作者: 陈露,博士,助理研究员,主要从事非传统稳定同位素研究。E-mail:luchennwu@163.com
  • 中图分类号: O657.63;O614.111;O613.81

A Study on Memory Effects in Lithium and Boron Isotope Analysis Using MC-ICP-MS

More Information
  • 锂(Li)和硼(B)同位素是地质作用过程中良好的示踪剂,被广泛应用于岩石起源、矿床成因和环境演化等领域。但锂、硼在MC-ICP-MS仪器分析中的“记忆效应”明显,不同实验室已报道的MC-ICP-MS分析中锂、硼背景占信号比变化范围大(0.01%~5%),所采用的背景控制方法和效果也各不相同,因此给锂、硼同位素的准确测定带来困难。为研究MC-ICP-MS锂、硼同位素记忆效应及其抑制方案,提高测试的稳定性,本文参考前人研究成果,设计不同背景清洗方案,并对各种国际标样(IRMM-016、JG-2、ERM-AE121、ERM-AE122、NASS-7)和实验室内部标准(Alfa Li、Alfa B)进行长期测试,检验实验方案的长期重现性。结果表明:仅使用0.3%氯化钠溶液清洗背景可以显著降低锂背景信号,从20mV下降至4mV,并保证7Li背景值在24h内低于5mV,实验室内部标准溶液Alfa Li的δ7Li长期测试外精度为0.13‰(2SD,n=73)。氟化钠、氨水等清洗液并不能显著降低本研究所使用仪器的硼背景,因此选择使用灵活的空白扣除方法来保证数据稳定性。实验室内部标准溶液Alfa B的δ11B长期测试外精度为0.19‰(2SD,n=60)。本文锂、硼同位素国际标样的测试结果与前人数据在误差范围内一致,证明了实验结论的可靠性。

  • 加载中
  • 图 1  2%硝酸清洗条件下,7Li背景信号随着仪器连续测试时间的增长而逐渐升高

    Figure 1. 

    图 2  5%氯化钠溶液清洗背景60s后,在正常测试过程中样品7Li灵敏度(200ng/g)、7Li背景(a)和7Li/6Li 测试内精度(SE)(b)的变化

    Figure 2. 

    图 3  2.5%、0.3%和0.1% 氯化钠溶液清洗背景60s后,在样品正常测试过程中7Li背景值的变化

    Figure 3. 

    图 4  2%硝酸清洗条件下,11B背景占信号比随着仪器连续测试时间的增长而逐渐升高

    Figure 4. 

    图 5  在不同类型洗液组合下11B背景信号随时间的变化

    Figure 5. 

    图 6  标准样品IRMM-016(a)、USTC-Li(b)、Alfa Li(c)和JG-2(d)相对于L-SVEC的δ7Li测定值及其参考值

    Figure 6. 

    图 7  标准样品EPM-AE 121(a)、EPM-AE 122(b)、Alfa B(c)和NASS-7(d)相对于NIST951a的δ11B测定值及其参考值

    Figure 7. 

    表 1  Nu Sapphire MC-ICP-MS仪器基本配置

    Table 1.  Basic configuration of the Nu Sapphire MC-ICP-MS instrument

    工作参数实验条件工作参数实验条件
    射频功率1300W炬管石英炬管
    加速电压6000V,高能模式雾化器气体(Ar)压力~30psi
    冷却气(Ar)流速13L/min镍锥,湿锥
    辅助气(Ar)流速0.9~1.0L/min接收器设置H6-11B;L6-10B
    H9-6Li;L6-7Li
    雾化器及流速玻璃雾化器,PFA雾化器,100/50μL/min分辨率低分辨
    下载: 导出CSV

    表 2  标准物质锂同位素组成测定值与参考值

    Table 2.  The measured and reported δ7LiL-SVEC values of standards

    标准物质 δ7LiL-SVEC参考值
    (‰)
    δ7LiL-SVEC测试值
    (‰)
    2SD
    (‰)
    n
    IRMM-016 −0.17~0.40a 0.12 0.07 50
    USTC-Li −19.30b −19.37 0.12 56
    Alfa Li 13.71 0.13 73
    JG-2 0.15~0.32c 0.13 0.11 12

    注:“−”表示无参考值。Alfa Li为实验室内部标准溶液,无参考值。a. IRMM-016的δ7LiL-SVEC参考值来源于GeoReM(Geological and Environmental Reference Materials)数据库及对应参考文献,仅统计MC-ICP-MS测试结果。b. USTC-Li 的δ7LiL-SVEC参考值由中国科技大学肖益林教授提供。c. JG-2的δ7LiL-SVEC参考值来源于Bouman等(2004)30、Jeffcoate等(2004)15、Li 等(2019)31、Lin等(2016)32和Zhu等(2020)33

    Note:“−” indicates the absence of a reference value. Alfa Li serves as the internal standard solution in the laboratory,and no reference value is available. a. The δ7LiL-SVEC reference value of IRMM-016 is derived from the Geological and Environmental Reference Materials (GeoReM) database and corresponding references,considering only the MC-ICP-MS test results. b. The δ7LiL-SVEC reference value of USTC-Li is provided by Professor Xiao Yilin from the University of Science and Technology of China. c. The δ7LiL-SVEC reference values of JG-2 are derived from Bouman et al. (2004) [30,Jeffcoate et al. (2004) 15,Li et al. (2019) 31,Lin et al. (2016) 32and Zhu et al. (2020) 33.

    下载: 导出CSV

    表 3  标准物质硼同位素组成测定值与参考值

    Table 3.  The determined values and reference values of the B isotope composition in the reference materials

    标准物质 δ11BNIST951参考值
    (‰)
    δ11BNIST951a测试值
    (‰)
    2SD
    (‰)
    n
    ERM-AE121 19.54~20.33a 19.78 0.31 64
    ERM-AE122 39.3~39.74a 39.54 0.33 36
    Alfa B −4.66 0.19 60
    海水标样NASS-7 40.03 0.33 35
    天然海水 39.98±0.35b
    天然海水 39.45~40.26b
    海水标样NASS-2 39.63~39.90c
    海水标样NASS-5 39.40~39.89c
    海水标样NASS-6 39.41~39.81c

    注:“−”表示无参考值。Alfa B为实验室内部标准溶液,无参考值。a. ERM-AE121和ERM-AE122的δ11BNIST 951参考值来自GeoReM数据库及对应参考文献。数据包括了样品相对于NIST SRM951和NIST SRM951a的参考值。b. 天然海水δ11BNIST 951参考值引自Chen等(2019)27及其中参考文献。c. NASS系列海水δ11BNIST 951参考值引自GeoReM数据库及对应参考文献。

    Note: “−” indicates the absence of a reference value. Alfa B is a laboratory standard solution without a designated reference value. a. The δ11BNIST 951 reference values of ERM-AE121 and ERM-AE122 are from the GeoReM database and corresponding references. The data include reference values of the sample with respect to NIST SRM951 and NIST SRM951a. b. The reference value of δ11BNIST 951 in natural seawater is cited from Chen et al. (2019) 27 and other references. c. The reference value of δ11BNIST 951 for NASS series seawater is sourced from the GeoReM database and corresponding references.

    下载: 导出CSV
  • [1]

    万红琼, 孙贺, 刘海洋, 等. 俯冲带锂同位素地球化学: 回顾与展望[J]. 地学前缘, 2015, 22(5): 29−43. doi: 10.13745/j.esf.2015.05.002

    Wan H Q, Sun H, Liu H Y, et al. Li isotope geochemistry in subduction zones: Review and prospect[J]. Earth Science Frontiers, 2015, 22(5): 29−43. doi: 10.13745/j.esf.2015.05.002

    [2]

    陆一敢, 肖益林, 王洋洋, 等. 锂同位素在矿床学中的应用: 现状与展望[J]. 地球科学, 2021, 46(12): 4346−4365. doi: 10.3799/dqkx.2020.390

    Lu Y G, Xiao Y L, Wang Y Y, et al. Exploration of Li isotope in application of ore deposits[J]. Earth Science, 2021, 46(12): 4346−4365. doi: 10.3799/dqkx.2020.390

    [3]

    Penniston-Dorland S, Liu X M, Rudnick R L. Lithium isotope geochemistry[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 165−217. doi: 10.2138/rmg.2017.82.6

    [4]

    郭顺. 俯冲-碰撞带硼循环[J]. 矿物岩石地球化学通报, 2021, 40(5): 1049−1060, 997. doi: 10.19658/j.issn.1007-2802.2021.40.063

    Guo S. Boron cycling in subduction-collision zones[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(5): 1049−1060, 997. doi: 10.19658/j.issn.1007-2802.2021.40.063

    [5]

    李银川, 董戈, 雷昉, 等. 硼同位素分馏的实验理论认识和矿床地球化学研究进展[J]. 地学前缘, 2020, 27(3): 14−28. doi: 10.13745/j.esf.sf.2020.4.43

    Li Y C, Dong G, Lei F, et al. Experimental and theoretical understanding of boron isotope fractionation and advances in ore deposit geochemistry study[J]. Earth Science Frontiers, 2020, 27(3): 14−28. doi: 10.13745/j.esf.sf.2020.4.43

    [6]

    张艳灵, 肖应凯, 马云麒, 等. 鹿角珊瑚硼同位素组成与海水表面pH值的相关性研究[J]. 分析化学, 2019, 47(1): 138−146. doi: 10.19756/j.issn.0253-3820.181516

    Zang Y L, Xiao Y K, Ma Y Q, et al. Study on the correlation between boron isotope composition of Acropora staghorn and water surface pH value[J]. Chinese Journal of Analytical Chemistry, 2019, 47(1): 138−146. doi: 10.19756/j.issn.0253-3820.181516

    [7]

    刘明亮, 正安婷, 尚建波, 等. 高温地热流体中硼的地球化学研究进展[J]. 地球科学, 2023, 48(3): 878−893. doi: 10.3799/dqkx.2022.235

    Liu M L, Zheng A T, Shang J B, et al. Research progress of boron geochemistry in high-temperature geothermal fluids[J]. Earth Science, 2023, 48(3): 878−893. doi: 10.3799/dqkx.2022.235

    [8]

    李慧芳, 马云麒, 李丽娟, 等. 热电离质谱法测定锂同位素的研究进展[J]. 盐湖研究, 2014, 22(4): 50−56.

    Li H F, Ma Y Q, Li L J, et al. Research progress of lithium isotope determination by thermoelectric ionization mass spectrometry[J]. Journal of Salt Lake Research, 2014, 22(4): 50−56.

    [9]

    韦刚健, Graham Mortimer, Malcolm McCulloch. 珊瑚高精度硼同位素组成分析: PTIMS与NTIMS方法的对比研究[J]. 地球化学, 2009, 38(2): 114−122. doi: 10.19700/j.0379-1726.2009.02.002

    Wei G J, Mortimer G, McCulloch M. Measurement of high-precision boron isotopic compositions in coral samples: Comparison between PTlMS and NTIMS methods[J]. Geochimica, 2009, 38(2): 114−122. doi: 10.19700/j.0379-1726.2009.02.002

    [10]

    赵悦, 侯可军, 田世洪, 等. 常用锂同位素地质标准物质的多接收器电感耦合等离子体质谱分析研究[J]. 岩矿测试, 2015, 34(1): 28−39. doi: 10.15898/j.cnki.11-2131/td.2015.01.006

    Zhao Y, Hou K J, Tian S H, et al. Study on measurements of lithium isotopic compositions for common standard reference materials using multi-collector inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2015, 34(1): 28−39. doi: 10.15898/j.cnki.11-2131/td.2015.01.006

    [11]

    张俊文, 孟俊伦, 赵志琦, 等. 多接收电感耦合等离子质谱法准确测定天然地质样品中的锂同位素组成[J]. 分析化学, 2019, 47(3): 415−422. doi: 10.19756/j.issn.0253-3820.181444

    Zhang J W, Meng J L, Zhao Z Q, et al. Multireceiver inductively coupled plasma mass spectrometry for accurate determination of lithium isotope composition in natural geological samples[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3): 415−422. doi: 10.19756/j.issn.0253-3820.181444

    [12]

    蔺洁, 刘勇胜, 胡兆初, 等. MC-ICP-MS准确测定地质样品中锂同位素组成[J]. 矿物岩石地球化学通报, 2016, 35(3): 458−464. doi: 10.3969/j.issn.1007-2802.2016.03.008

    Lin J, Liu Y S, Hu Z C, et al. Accurate analysis of lithium isotopic composition of geological samples by MC-ICP-MS[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(3): 458−464. doi: 10.3969/j.issn.1007-2802.2016.03.008

    [13]

    李子夏, 逯海. 一步离子交换-多接收电感耦合等离子体质谱法测定高钙生物样品的硼同位素组成[J]. 岩矿测试, 2020, 39(3): 417−424. doi: 10.15898/j.cnki.11-2131/td.201909290141

    Li Z X, Lu H. Determination of boron isotope composition in high calcium biological samples by one-step ion exchange and multiple reception inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(3): 417−424. doi: 10.15898/j.cnki.11-2131/td.201909290141

    [14]

    Cai Y, Rasbury E T, Wooton K M, et al. Rapid boron isotope and concentration measurements of silicate geological reference materials dissolved through sodium peroxide sintering[J]. Journal of Analytical Atomic Spectrometry, 2021, 36: 2153−2163. doi: 10.1039/D1JA00195G

    [15]

    Jeffcoate A B, Elliott T, Thomas A, et al. Precise/small sample size determinations of lithium isotopic compositions of geological reference materials and modern seawater by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2004, 28: 161−172. doi: 10.1111/j.1751-908X.2004.tb01053.x

    [16]

    He M Y, Deng L, Lu H, et al. Elimination of the boron memory effect for rapid and accurate boron isotope analysis by MC-ICP-MS using NaF[J]. Journal of Analytical Atomic Spectrometry, 2019, 34: 1026−1032. doi: 10.1039/C9JA00007K

    [17]

    冯林秀, 李正辉, 曹秋香, 等. 硼同位素分析测试技术研究进展[J]. 岩矿测试, 2023, 42(1): 16−38. doi: 10.15898/j.cnki.11-2131/td.202209140170

    Feng L X, Li Z H, Chao Q X, et al. A review on the development of boron isotope analytical techniques[J]. Rock and Mineral Analysis, 2023, 42(1): 16−38. doi: 10.15898/j.cnki.11-2131/td.202209140170

    [18]

    李超, 王登红, 屈文俊, 等. 关键金属元素分析测试技术方法应用进展[J]. 岩矿测试, 2020, 39(5): 658−669. doi: 10.15898/j.cnki.11-2131/td.201907310115

    Li C, Wang D H, Qu W J, et al. A review and perspective on analytical methods of critical metal elements[J]. Rock and Mineral Analysis, 2020, 39(5): 658−669. doi: 10.15898/j.cnki.11-2131/td.201907310115

    [19]

    Foster G L, Marschall H R, Palmer M R. Boron isotopes: The fifth element[M]. Switzerland: Springer Cham, 2018: 13-31.

    [20]

    徐洁, 张贵宾, 李楠, 等. LA-MC-ICPMS电气石及白云母原位硼同位素测试方法及应用[J]. 岩石矿物学杂志, 2020, 39(3): 323−334. doi: 10.3969/j.issn.1000-6524.2020.03.008

    Xu J, Zhang G B, Li N, et al. In situ boron isotope analysis method for tourmaline and muscovite by LA-MC-ICPMS and its applications[J]. Acta Petrologica et Mineralogica, 2020, 39(3): 323−334. doi: 10.3969/j.issn.1000-6524.2020.03.008

    [21]

    蒋少涌, 陈唯, 赵葵东, 等. 基于LA-(MC)-ICP-MS的矿物原位微区同位素分析技术及其应用[J]. 质谱学报, 2021, 42(5): 623−640. doi: 10.7538/zpxb.2021.0135

    Jiang S Y, Chen W, Zhao K D, et al. In situ micro-analysis of isotopic compositions of solid minerals using LA-(MC)-ICP-MS methods and their applications[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(5): 623−640. doi: 10.7538/zpxb.2021.0135

    [22]

    Steinmann L K, Oeser M, Horn I, et al. In situ high-precision lithium isotope analyses at low concentration levels with femtosecond-LA-MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(7): 1447−1458. doi: 10.1039/c9ja00088g

    [23]

    Evans D, Gerdes A, Coenen D, et al. Accurate correction for the matrix interference on laser ablation MC-ICPMS boron isotope measurements in CaCO3 and silicate matrices[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(8): 1607−1617. doi: 10.1039/d1ja00073j

    [24]

    刘纯瑶, 苟龙飞, 邓丽, 等. 离子交换过程中锂同位素分馏对锂同位素测试准确度的影响[J]. 岩矿测试, 2019, 38(1): 35−44. doi: 10.15898/j.cnki.11-2131/td.201806060070

    Liu C Y, Gou L F, Deng L, et al. Effects of Li isotopic fractionation during ion exchange on the measurement accuracy of Li isotopes[J]. Rock and Mineral Analysis, 2019, 38(1): 35−44. doi: 10.15898/j.cnki.11-2131/td.201806060070

    [25]

    苏嫒娜, 田世洪, 李真真, 等. MC-ICP-MS高精度测定锂同位素分析方法[J]. 地学前缘, 2011, 18(2): 304−314.

    Su A N, Tian S H, Li Z Z, et al. High-precision measurement of lithium isotopes using MC-ICP-MS[J]. Earth Science Frontiers, 2011, 18(2): 304−314.

    [26]

    Paul A N, Stewart J A, Agostini S, et al. Refining boron isotopic measurements of silicate samples by multi-collector-inductively coupled plasma-mass spectrometry (MC-ICP-MS)[J]. Geostandards and Geoanalytical Research, 2024, 48(1): 91−108. doi: 10.1111/ggr.12527

    [27]

    Chen X Y, Teng F Z, Catling D C. Fast and precise boron isotopic analysis of carbonates and seawater using Nu Plasma Ⅱ multi-collector inductively coupled plasma mass spectrometry and a simple sample introduction system[J]. Rapid Communications in Mass Spectrometry, 2019, 33: 1169−1178. doi: 10.1002/rcm.8456

    [28]

    Buisson M, Louvat P, Thaler C, et al. High precision MC-ICP-MS measurements of 11B/10B ratios from ng amounts of boron in carbonate samples using microsublimation and direct injection (μ-dDIHEN)[J]. Journal of Analytical Atomic Spectrometry, 2021, 36: 2116−2131. doi: 10.1039/d1ja00109d

    [29]

    Flesch G D, Anderson Jr, A R, et al. A secondary isotopic standard for 6Li/7Li determinations[J]. International Journal of Mass Spectrometry and Ion Physics, 1973, 12(3): 265−272. doi: 10.1016/0020-7381(73)80043-9

    [30]

    Bouman C, Elliott T, Vroon P Z. Lithium inputs to subduction zones[J]. Chemical Geology, 2004, 212: 59−79. doi: 10.1016/j.chemgeo.2004.08.004

    [31]

    Li W, Liu X M, Godfrey L V. Optimisation of lithium chromatography for isotopic analysis in geological reference materials by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2019, 43: 261−276. doi: 10.1111/ggr.12254

    [32]

    Lin J, Liu Y, Hu Z, et al. Accurate determination of lithium isotope ratios by MC-ICP-MS without strict matrix-matching by using a novel washing method[J]. Journal of Analytical Atomic Spectrometry, 2016, 31: 390−397. doi: 10.1039/c5ja00231a

    [33]

    Zhu G, Ma J, Wei G, et al. A rapid and simple method for lithium purification and isotopic analysis of geological reference materials by MC-ICP-MS[J]. Frontiers in Chemistry, 2020, 8: 557489. doi: 10.3389/fchem.2020.557489

    [34]

    Bao Z, Huang K, Huang T, et al. Precise magnesium isotope analyses of high-K and low-Mg rocks by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2019, 34: 940−953. doi: 10.1039/C9JA00002J

    [35]

    Druce M, Stirling C H, Rolison J M. High-precision zinc isotopic measurement of certified reference materials relevant to the environmental, Earth, planetary and biomedical sciences[J]. Geostandards and Geoanalytical Research, 2020, 44: 711−732. doi: 10.1111/GGR.12341

  • 加载中

(7)

(3)

计量
  • 文章访问数:  701
  • PDF下载数:  63
  • 施引文献:  0
出版历程
收稿日期:  2023-10-26
修回日期:  2024-03-06
录用日期:  2024-03-13
刊出日期:  2024-04-30

目录