中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

生物炭富集-电感耦合等离子体质谱法测定海水中的痕量铅铜

韩梅, 张威, 贾娜, 张辰凌, 孔祥科. 生物炭富集-电感耦合等离子体质谱法测定海水中的痕量铅铜[J]. 岩矿测试, 2024, 43(2): 281-288. doi: 10.15898/j.ykcs.202308170138
引用本文: 韩梅, 张威, 贾娜, 张辰凌, 孔祥科. 生物炭富集-电感耦合等离子体质谱法测定海水中的痕量铅铜[J]. 岩矿测试, 2024, 43(2): 281-288. doi: 10.15898/j.ykcs.202308170138
HAN Mei, ZHANG Wei, JIA Na, ZHANG Chenling, KONG Xiangke. Determination of Trace Lead and Copper in Seawater by Inductively Coupled Plasma-Mass Spectrometry with Coconut Shell Biochar Enrichment[J]. Rock and Mineral Analysis, 2024, 43(2): 281-288. doi: 10.15898/j.ykcs.202308170138
Citation: HAN Mei, ZHANG Wei, JIA Na, ZHANG Chenling, KONG Xiangke. Determination of Trace Lead and Copper in Seawater by Inductively Coupled Plasma-Mass Spectrometry with Coconut Shell Biochar Enrichment[J]. Rock and Mineral Analysis, 2024, 43(2): 281-288. doi: 10.15898/j.ykcs.202308170138

生物炭富集-电感耦合等离子体质谱法测定海水中的痕量铅铜

  • 基金项目: 国家自然科学基金面上项目(42077179);河北省自然科学基金项目(D2020504003)
详细信息
    作者简介: 韩梅,硕士,高级工程师,主要从事无机化学分析。E-mail:hanmei0209@163.com
    通讯作者: 张威,硕士,工程师,主要从事材料化学研究及污染修复。E-mail:ihegzhangwei@163.com
  • 中图分类号: O657.6

Determination of Trace Lead and Copper in Seawater by Inductively Coupled Plasma-Mass Spectrometry with Coconut Shell Biochar Enrichment

More Information
  • 海洋环境中的重金属污染备受关注,准确测定海水中的痕量重金属,对保护海洋环境和人类健康具有重要意义。海水样品的高盐和重金属痕量浓度等特点给仪器分析带来巨大挑战,直接准确测定高盐基质中的低含量重金属元素是非常困难的,须经前处理去除海水中的大量盐分,并对待测元素进行富集,从而消除基体干扰,降低检出限。为实现海水中的痕量铅和铜的绿色分离与快速检测,本文采用吸附脱附的方式,将海水中铅和铜富集在椰壳生物炭上,再用超纯水反复冲洗生物炭,除去盐分基质,经硝酸溶解脱附,脱附液用0.45μm滤膜过滤后利用电感耦合等离子体质谱法(ICP-MS)测定,建立了生物炭富集ICP-MS测定海水中铅和铜含量的方法。两种金属元素在0.10~100μg/L范围内线性关系良好,线性相关系数均大于0.9995。海水中铅和铜,方法检出限分别为0.005μg/L和0.006μg/L,测定下限分别为0.020μg/L和0.024μg/L,满足《海水、海洋沉积物和海洋生物质量评价技术规范》(HJ 1300—2023)规定的海水质量评价要求。海水样品加标回收率在96.1%~102.3%范围内,相对标准偏差小于5%。本方法操作简便、分析成本低、绿色环保,更适合于基层海洋监测应用,也可用于高矿化度基体样品的水质监测。

  • 加载中
  • 图 1  溶液pH值对重金属元素回收率的影响

    Figure 1. 

    图 2  椰壳生物炭用量对重金属元素回收率的影响

    Figure 2. 

    图 3  硝酸浓度对Pb和Cu回收率的影响

    Figure 3. 

    表 1  海水中重金属元素质控样品的测定结果

    Table 1.  Analytical results of quality control samples for heavy metal elements in seawater

    重金属
    元素
    BWQ7001-2016(北方伟业)TMQC0129(坛墨质检)
    标准值
    (μg/L)
    实际测定值
    (μg/L)
    标准值
    (μg/L)
    实际测定值
    (μg/L)
    Pb10.0±0.69.9210.2±0.610.23
    Cu5.0±0.45.055.6±0.55.57
    下载: 导出CSV
  • [1]

    周雷, 罗勇, 黄朝耿, 等. 超声辅助酸提取-ICP-MS快速测定水产品中多种重金属[J]. 食品安全与检测, 2020, 45(8): 292−297.

    Zhou L, Luo Y, Huang C G, et al. Rapid detection of multi-elements in aquatic products using ultrasonic-assisted acid extraction by ICP-MS method[J]. Food Science and Technology, 2020, 45(8): 292−297.

    [2]

    肖玉芳, 陆丽君, 李明. SPE-ICP-MS联用测定地下水中的Pb, Cu, Cd和Cr[J]. 环境科学与技术, 2016, 39(S2): 358−361.

    Xiao Y F, Lu L J, Li M. Solid-phase extraction of Pb, Cu, Cd and Cr in groundwater on multi-walled carbon nanotubes with inductively coupled plasma mass spectrometry[J]. Environment Science & Technology, 2016, 39(S2): 358−361.

    [3]

    谭赛章, 张昊飞, 吴康康, 等. 自动化树脂分离富集装置与ICP-MS联用在海水痕量金属元素分析中的应用[J]. 上海海洋大学学报, 2019, 28(5): 662−670. doi: 10.12024/jsou.20181202457

    Tan S Z, Zhang H F, Wu K K, et al. Determination of trace metals in seawater by inductively coupled plasma mass spectrometry after pre-concentration using an automated system[J]. Journal of Shanghai Ocean University, 2019, 28(5): 662−670. doi: 10.12024/jsou.20181202457

    [4]

    赵明杰, 孙志佳, 闫兴国, 等. 广东吴川近岸海域表层海水重金属含量及生态风险分析[J]. 海洋地质前沿, 2023, 39(1): 70−76.

    Zhao M J, Sun Z J, Yan X G, et al. Analysis of heavy metal content and ecological risk in surface seawater of Wuchuan coastal area, Guangdong Province[J]. Marine Geology Frontiers, 2023, 39(1): 70−76.

    [5]

    公金文, 陈发荣, 郑立, 等. 红海湾表层海水重金属含量与污染评价[J]. 海洋科学进展, 2021, 39(4): 570−580.

    Gong J W, Chen F R, Zheng L, et al. The concentrations and pollution assessment of heavy metal in surface seawater in Honghai Bay[J]. Advances in Marine Science, 2021, 39(4): 570−580.

    [6]

    Chen J G, Bi W H. Monitoring technology of trace heavy metals in seawater based on spectrophotometry[J]. Chemical Engineering Transactions (CET Journal), 2016, 55: 313−318.

    [7]

    王增焕, 王许诺, 谷阳光, 等. 疏水性螯合物固相萃取-原子吸收光谱法测定海水中 5种重金属[J]. 岩矿测试, 2017, 36(4): 360−366.

    Wang Z H, Wang X N, Gu Y G, et al. Determination of 5 heavy metals in seawater by atomic absorption spectrometry with solid-phase extraction of hydrophobic chelate[J]. Rock and Mineral Analysis, 2017, 36(4): 360−366.

    [8]

    陈晓琴, 黄晶, 张蕾. 固相萃取-电感耦合等离子体原子发射光谱(ICP-AES)法测定地下水中三种重金属[J]. 中国无机分析化学, 2022, 12(5): 7−12. doi: 10.3969/j.issn.2095-1035.2022.05.002

    Chen X Q, Huang J, Zhang L. Determination of three heavy metals in groundwater by inductively coupled plasma atomic emission spectrometry (ICP-AES) with solid phase extraction[J]. Chinese Journal of Inorganic Analytical Chemistry, 2022, 12(5): 7−12. doi: 10.3969/j.issn.2095-1035.2022.05.002

    [9]

    贾亮亮, 范培栋, 张永辉, 等. 固相萃取-电感耦合等离子体质谱(ICP-MS)法测定海水中6种金属元素[J]. 中国无机分析化学, 2023, 13(2): 117−122. doi: 10.3969/j.issn.2095-1035.2023.02.002

    Jia L L, Fan P D, Zhang Y H, et al. Determination of six metal elements in seawater by inductively coupled plasma mass spectrometry with solid phase extraction[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(2): 117−122. doi: 10.3969/j.issn.2095-1035.2023.02.002

    [10]

    殷俊, 陈贝贝, 何蔓, 等. 聚合物整体柱微萃取与氟化电热蒸发电感耦合等离子体质谱法联用测定海水中的痕量钒和铬[J]. 分析科学学报, 2021, 37(4): 547−552.

    Yin J, Chen B B, He M, et al. Determination of trace V and Cr in seawater by polymer monolithic column microextraction-fluorination electrothermal vaporization-inductively coupled plasma mass spectrometry[J]. Journal of Analytical Science, 2021, 37(4): 547−552.

    [11]

    王静, 王鑫, 耿哲, 等. 碰撞池-电感耦合等离子体质谱测定海水重金属[J]. 环境工程学报, 2016, 10(4): 2139−2143. doi: 10.12030/j.cjee.20160488

    Wang J, Wang X, Geng Z, et al. Determination of heavy metal in marine waters by collision cell inductively coupled plasma mass spectrometry[J]. Chinese Journal of Environmental Engineering, 2016, 10(4): 2139−2143. doi: 10.12030/j.cjee.20160488

    [12]

    刘瑶, 宋金明, 孙玲玲, 等. 氢氧化镁共沉淀富集分离ICP-MS测定海水中的稀土元素[J]. 海洋环境科学, 2019, 38(2): 303−309. doi: 10.12111/j.cnki.mes20190220

    Liu Y, Song J M, Sun L L, et al. Determination of trace rare earth elements in seawater by ICP-MS with Mg(OH)2 co-precipitation treatment[J]. Marine Environmental Science, 2019, 38(2): 303−309. doi: 10.12111/j.cnki.mes20190220

    [13]

    李丽君, 薛静. 微波消解-电感耦合等离子体质谱法测定高岭土中10种微量元素[J]. 岩矿测试, 2022, 41(1): 22−31. doi: 10.3969/j.issn.0254-5357.2022.1.ykcs202201003

    Li L J, Xue J. Determination of 10 trace elements in kaolin by ICP-MS with microwave digestion[J]. Rock and Mineral Analysis, 2022, 41(1): 22−31. doi: 10.3969/j.issn.0254-5357.2022.1.ykcs202201003

    [14]

    胡建坤, 韩双来, 卢水淼, 等. 海水痕量金属元素分析中前处理技术的研究进展[J]. 理化检验(化学分册), 2022, 58(10): 1232−1240.

    Hu J K, Han S L, Lu S M, et al. Research progress of pretreatment technology for analysis of trace metal elements in seawater[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2022, 58(10): 1232−1240.

    [15]

    Ge Y C, Zhang R F, Jiang Z Y, et al. Determination of Fe, Ni, Cu, Zn, Cd and Pb in seawater by isotope dilution automatic solid-phase extraction-ICP-MS[J]. Acta Oceanologica Sinica, 2022, 41(8): 129−136. doi: 10.1007/s13131-022-2016-2

    [16]

    张俊, 姜伟, 宁志铭, 等. 直接稀释-电感耦合等离子体质谱法测定海水中4种溶解态金属[J]. 海洋环境科学, 2023, 42(3): 466−470. doi: 10.12111/j.mes.2022-x-0107

    Zhang J, Jiang W, Ning Z M, et al. Determination of 4 dissolved metals in seawater by direct dilution-inductively coupled plasma mass spectrometry method[J]. Marine Environmental Science, 2023, 42(3): 466−470. doi: 10.12111/j.mes.2022-x-0107

    [17]

    Li H T, Tong R, Guo W, et al. Development of a fully automatic separation system coupled with online ICP-MS for measuring rare earth elements in seawater[J]. RSC Advances, 2022, 12(37): 24003−24013. doi: 10.1039/D2RA02833F

    [18]

    刘伟, 宋金明, 袁华茂, 等. Mg(OH)2共沉淀和直接稀释联用ICP-MS法准确测定海水中的多种常量-微量元素[J]. 分析测试学报, 2017, 36(4): 471−477. doi: 10.3969/j.issn.1004-4957.2017.04.005

    Liu W, Song J M, Yuan H M, et al. Simultaneous determination of multiple macro-trace elements in seawater by ICP-MS combined with Mg(OH)2 co-precipitation and direct dilution pretreatment[J]. Journal of Instrumental Analysis, 2017, 36(4): 471−477. doi: 10.3969/j.issn.1004-4957.2017.04.005

    [19]

    王丹红, 林建杰, 蔡春平, 等. 在线分离富集ICP-MS法直接测定海水中痕量稀土元素[J]. 分析试验室, 2016, 35(7): 773−776.

    Wang D H, Lin J J, Cai C P, et al. Determination of trace rare earth element in seawater by inductively coupled plasma mass spectrometry with online separation and enrichment technique[J]. Chinese Journal of Analysis Laboratory, 2016, 35(7): 773−776.

    [20]

    林梵宇, 曾怡杭, 尹希杰, 等. 共沉淀富集法测定海水中稀土元素含量方法研究[J]. 应用海洋学学报, 2020, 39(4): 582−589. doi: 10.3969/J.ISSN.2095-4972.2020.04.015

    Lin F Y, Zeng Y H, Yin X J, et al. Experimental conditions for determination of rare earth elements in seawater by coprecipitation enrichment method[J]. Journal of Applied Oceanography, 2020, 39(4): 582−589. doi: 10.3969/J.ISSN.2095-4972.2020.04.015

    [21]

    许星鸿, 姚海洋, 孟霄, 等. 连云港附近海域海水、表层沉积物和水产品的重金属污染及生态风险评价[J]. 海洋湖沼通报, 2019(5): 110−116.

    Xu X H, Yao H Y, Meng X, et al. Evaluation on heavy metals pollution and potential ecological risk in seawater, surface sediment and marine organisms in Lianyungang sea areas[J]. Transactions of Oceanology and Limnology, 2019(5): 110−116.

    [22]

    闫琨, 庞国涛, 邢新丽, 等. 广西企沙半岛近岸表层海水重金属分布、来源及生态风险评价[J]. 海洋环境科学, 2023, 42(1): 89−96.

    Yan K, Pang G T, Xing X L, et al. Distribution, source analysis and ecological risk assessment of heavy metals in surface seawater near Qisha Peninsula, Guangxi[J]. Marine Environmental Science, 2023, 42(1): 89−96.

    [23]

    刘宪斌, 朱浩然, 郭夏青, 等. 河北黄骅近岸海域表层海水重金属污染特征及生态风险评价[J]. 安全与环境学报, 2020, 20(2): 747−755.

    Liu X B, Zhu H R, Guo X Q, et al. On situation of heavy metal contaminant residents in seawater along Huanghua coast area and potential ecological risk assessment, Cangzhou, Hebei[J]. Journal of Safety and Envionment, 2020, 20(2): 747−755.

    [24]

    Wang G L, Zhou Y G, Bian J, et al. Determination of trace heavy metals in seawater with 8-hydroxyquinoline solid phase extraction by ICP-OES[J]. IOP Conference Series: Earth and Environmental Science, 2019, 344(1): 012127. doi: 10.1088/1755-1315/344/1/012127

    [25]

    Raso M, Censi P, Saiano F. Simultaneous determinations of zirconium, hafnium, yttrium and lanthanides in seawater according to a co-precipitation technique onto iron-hydroxide[J]. Talanta, 2013, 116(3): 1085−1090.

    [26]

    杨武琳, 陈火荣, 李荣茂. In(OH)3共沉淀-电感耦合等离子体质谱法测定海水中的稀土元素[J]. 中国测试, 2018, 44(11): 36−39. doi: 10.11857/j.issn.1674-5124.2018.11.006

    Yang W L, Chen H R, Li R M. Determination of rare earth elements in seawater by inductively coupled plasma-mass spectrometry with pre-concentration of In(OH)3 co-precipitation[J]. China Measurement & Test, 2018, 44(11): 36−39. doi: 10.11857/j.issn.1674-5124.2018.11.006

    [27]

    Chu J, Huang Q G, Gao R Q, et al. Determining the concentration of trace vanadium in natural saline lake brines[J]. Nuclear Physics Review, 2022, 39(2): 238−244.

    [28]

    朱兆洲, 杨鑫鑫, 李军, 等. 固相萃取-电感耦合等离子体质谱法测定地表高盐水体中的痕量稀土元素[J]. 光谱学与光谱分析, 2022, 42(6): 1862−1866. doi: 10.3964/j.issn.1000-0593(2022)06-1862-05

    Zhu Z Z, Yang X X, Li J, et al. Determination of rare earth elements in high-salt water by ICP-MS after pre-concentration using a chelating resin[J]. Spectroscopy and Spectral Analysis, 2022, 42(6): 1862−1866. doi: 10.3964/j.issn.1000-0593(2022)06-1862-05

    [29]

    王小静, 刘洪娜, 任艺君, 等. 海洋沉积物孔隙水中痕量金属元素的测试分析方法[J]. 海洋与湖沼, 2022, 53(5): 1079−1088. doi: 10.11693/hyhz20220100010

    Wang X J, Liu H N, Ren Y J, et al. Determination of trace metals in porewater samples of marine sediments[J]. Oceanologia et Limnologia Sinica, 2022, 53(5): 1079−1088. doi: 10.11693/hyhz20220100010

    [30]

    Rapp I, Schlosser C, Rusieck A D, et al. Automated preconcentration of Fe, Zn, Cu, Ni, Cd, Pb, Co and Mn in seawater with analysis using high resolution sector field inductively-coupled plasma mass spectrometry[J]. Analytica Chimica Acta, 2017, 976: 1−13. doi: 10.1016/j.aca.2017.05.008

    [31]

    Zhang X Y, Gao B, Creamer A E, et al. Adsorption of VOCs onto engineered carbon materials: A review[J]. Journal of Hazardous Materials, 2017, 338: 102−123. doi: 10.1016/j.jhazmat.2017.05.013

    [32]

    于长江, 石云龙, 杨孟威, 等. 椰壳生物碳磁性复合材料对Pb(Ⅱ)的吸附性能研究[J]. 广州化工, 2022, 50(22): 96−99. doi: 10.3969/j.issn.1001-9677.2022.22.029

    Yu C J, Shi Y L, Yang M W, et al. Pb(Ⅱ) adsorption on prepared coconut shell derived biochar magnetic composites[J]. Guangzhou Chemical Industry, 2022, 50(22): 96−99. doi: 10.3969/j.issn.1001-9677.2022.22.029

    [33]

    杨梦楠, 孙晗, 曹海龙, 等. 生物炭-壳聚糖磁性复合吸附剂的制备及去除地下水中铅和铜[J]. 岩矿测试, 2023, 42(3): 563−575.

    Yang M N, Sun H, Cao H L, et al. Preparation and application of biochar-chitosan magnetic composite adsorbent for removal of lead and copper from groundwater[J]. Rock and Mineral Analysis, 2023, 42(3): 563−575.

    [34]

    董丽华, 杨晓红, 陈志颖, 等. BAC工艺中活性炭去除重金属机理研究——以Pb(Ⅱ)为例[J]. 中国环境科学, 2023, 43(5): 2228−2238. doi: 10.3969/j.issn.1000-6923.2023.05.014

    Dong L H, Yang X H, Chen Z Y, et al. Mechanism of heavy metal removal by spent activated carbon in BAC process—Pb(Ⅱ) example[J]. China Environmental Science, 2023, 43(5): 2228−2238. doi: 10.3969/j.issn.1000-6923.2023.05.014

    [35]

    陈淇, 程婷, 肖更生, 等. 榴莲壳和龙眼壳活性炭的制备、表征及其吸附性能研究[J]. 食品工业科技, 2023, 44(15): 46−54.

    Chen Q, Cheng T, Xiao G S, et al. Preparation, characterization and adsorption performance of activated carbon from durian shell and longan shell[J]. Science and Technology of Food Industry, 2023, 44(15): 46−54.

    [36]

    范明霞, 童仕唐. 活性炭上吸附态重金属稳定性[J]. 环境工程学报, 2017, 11(1): 312−316. doi: 10.12030/j.cjee.201508191

    Fan M X, Tong S T. Stability of heavy metals by adsorption on activated carbons[J]. Chinese Journal of Environmental Engineering, 2017, 11(1): 312−316. doi: 10.12030/j.cjee.201508191

  • 加载中

(3)

(1)

计量
  • 文章访问数:  543
  • PDF下载数:  30
  • 施引文献:  0
出版历程
收稿日期:  2023-08-17
修回日期:  2024-01-15
录用日期:  2024-02-07
刊出日期:  2024-04-30

目录