中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

多孔有机聚合物/壳聚糖复合材料的制备及其对Hg(Ⅱ) 吸附性能探究

申汝佳, 许乃岑, 时磊, 黄海波, 陈海英, 张静, 沈加林, 李华玲, 陈雅丽. 多孔有机聚合物/壳聚糖复合材料的制备及其对Hg(Ⅱ) 吸附性能探究[J]. 岩矿测试, 2024, 43(2): 289-301. doi: 10.15898/j.ykcs.202211170219
引用本文: 申汝佳, 许乃岑, 时磊, 黄海波, 陈海英, 张静, 沈加林, 李华玲, 陈雅丽. 多孔有机聚合物/壳聚糖复合材料的制备及其对Hg(Ⅱ) 吸附性能探究[J]. 岩矿测试, 2024, 43(2): 289-301. doi: 10.15898/j.ykcs.202211170219
SHEN Rujia, XU Naicen, SHI Lei, HUANG Haibo, CHEN Haiying, ZHANG Jing, SHEN Jialin, LI Hualing, CHEN Yali. Facile Synthesis of Porous Organic Polymer/Chitosan Composites and the Removal Effect of Hg(Ⅱ)[J]. Rock and Mineral Analysis, 2024, 43(2): 289-301. doi: 10.15898/j.ykcs.202211170219
Citation: SHEN Rujia, XU Naicen, SHI Lei, HUANG Haibo, CHEN Haiying, ZHANG Jing, SHEN Jialin, LI Hualing, CHEN Yali. Facile Synthesis of Porous Organic Polymer/Chitosan Composites and the Removal Effect of Hg(Ⅱ)[J]. Rock and Mineral Analysis, 2024, 43(2): 289-301. doi: 10.15898/j.ykcs.202211170219

多孔有机聚合物/壳聚糖复合材料的制备及其对Hg(Ⅱ) 吸附性能探究

  • 基金项目: 国家重点研发计划项目(2017YFF0206804)课题“土地生态恢复评价检验检测及质量控制标准研究”
详细信息
    作者简介: 申汝佳,硕士,助理工程师,主要从事纳米多孔材料合成与环境修复应用研究。E-mail:Rujia1996@outlook.com
    通讯作者: 沈加林,硕士,正高级工程师,主要从事分析测试、物相分析、地质矿产研究。E-mail:sjlilu@163.com。;  李华玲,硕士,高级工程师,主要从事岩矿分析测试研究。E-mail:lihualing1980@163.com
  • 中图分类号: X820.4

Facile Synthesis of Porous Organic Polymer/Chitosan Composites and the Removal Effect of Hg(Ⅱ)

More Information
  • 特定多孔结构和杂原子掺杂的吸附剂对提高重金属离子的吸附性能具有重要意义。传统的多孔有机聚合物材料大多在溶剂中合成,且为粉末状的形式,但在合成方法优化和实际应用便捷性方面仍有一定的发展空间。本文针对水体中的汞污染,采用简单快速的机械研磨法以1,3,5-三醛基间苯三酚(Tp)和硫脲(TU)制备硫掺杂的多孔有机聚合物(TpTU)与壳聚糖(CS)复合材料TpTU@CS。采用X射线衍射光谱、N2吸附-解吸和傅里叶变换红外光谱等技术对TpTU@CS复合材料进行表征。通过扫描电镜证实了TpTU@CS复合材料的多孔结构。由于在分子网络中引入了−C=S−基团,合成的TpTU@CS在水溶液中对Hg(Ⅱ)具有更高的吸附选择性和亲和力,吸附容量高(249.21mg/g),吸附动力学快(10min)。通过表征分析得出,TpTU@CS捕获Hg(Ⅱ)的主要机制是C=S中S与Hg的键合以及C−N与Hg(Ⅱ)的配位相互作用。与其他研究相比,TpTU@CS具有优异的吸附性能,且具有易于处理和可回收利用的优点。同时,该复合材料TpTU@CS对于Hg(Ⅱ)低浓度污染的实际水样和高浓度的加标水样,均具有较高的去除能力,去除率可达到77.0%~100.0%。

  • 加载中
  • 图 1  TpTU@CS的SEM图像: (a) 200nm尺度形貌;(b) 100nm尺度形貌

    Figure 1. 

    图 2  (a) TpTU和TpTU@CS的傅里叶变换红外光谱;(b) TpTU和TpTU@CS的X射线衍射分析结果

    Figure 2. 

    图 3  (a) TpTU@CS的N2吸附-解吸分析曲线;(b) TpTU@CS的孔径分布结果

    Figure 3. 

    图 4  (a)Langmuir和Freundlich模型拟合结果;(b) 准一级动力学和准二级动力学模型拟合结果

    Figure 4. 

    图 5  TpTU-CS的吸附选择性

    Figure 5. 

    图 6  TpTU-CS和TpTU-CS@Hg的XPS全扫描光谱

    Figure 6. 

    图 7  TpTU-CS@Hg的XPS S2p(a)、N1s(b)、O1s(c)和Hg4f(d)精细光谱

    Figure 7. 

    表 1  TpTU@CS对Hg(Ⅱ)的吸附等温线和动力学拟合结果(25℃)

    Table 1.  Adsorption isotherms and kinetic fitting results of TpTU@CS adsorption on Hg(Ⅱ) at 25℃

    吸附等温线Freundlich吸附模型Langmuir吸附模型
    nKF (mg/g)R2Qm (mg/g)KL (L/mg)R2
    3.704249.210.9659227.520.790.9033
    吸附动力学拟一级动力学模型拟二级动力学模型
    k1 (min−1)Qe (mg/g)R2k2 [g/(mg·min)]Qe (mg/g)R2
    0.39189.720.99380.003202.530.9868
    下载: 导出CSV

    表 2  TpTU@CS处理实际水样中Hg(Ⅱ)的吸附效果

    Table 2.  Adsorption effect of Hg(Ⅱ) in real water samples pretreated by TpTU@CS

    实际水样 Hg(Ⅱ)浓度
    (μg/L)
    Hg(Ⅱ)去除率
    (%)
    Hg(Ⅱ)加标浓度
    (1mg/L)
    Hg(Ⅱ)加标浓度
    (2mg/L)
    Hg(Ⅱ)加标浓度
    (5mg/L)
    去除率
    (%)
    RSD
    (n=3)
    去除率
    (%)
    RSD
    (n=3)
    去除率
    (%)
    RSD
    (n=3)
    溪水 0.64 100.0 83.4 0.51 83.7 1.56 78.7 1.19
    湖水 6.61 100.0 77.4 0.83 81.5 1.18 77.0 1.33
    池塘水 9.72 100.0 78.6 1.19 79.8 1.29 78.9 0.62
    下载: 导出CSV

    表 3  不同吸附剂对Hg(Ⅱ)去除效果的比较

    Table 3.  Comparison of removal effects of Hg(Ⅱ) pretreated with different adsorbents

    吸附剂所属类别 吸附材料名称 对Hg(Ⅱ)吸附容量
    (mg/g)
    参考文献
    改性多孔碳 AC 90.9 37
    CAC 167 37
    水凝胶 SeCA-GH 168 38
    金属有机骨架 Fe3O4@SiO2@HKUST-1/Bi-I 264 39
    Zr-MOF 282 15
    共价有机骨架 MSCTF-1 221 24
    Fe3O4/M-COFs 101.2 40
    复合材料 TpTU@CS 249.2 本文工作
    下载: 导出CSV
  • [1]

    Zhu R M, Zhang P L, Zhang X X, et al. Fabrication of synergistic sites on an oxygen-rich covalent organic framework for efficient removal of Cd(Ⅱ) and Pb(Ⅱ) from water[J]. Journal of Hazardous Materials, 2022, 424: 8. doi: 10.1016/j.jhazmat.2021.127301

    [2]

    邢润华, 吴正, 杜国强. 安徽省宣州区土壤重金属污染风险评估及来源分析[J]. 华东地质, 2022, 43(3): 336−344. doi: 10.16788/j.hddz.32-1865/P.2022.03.009

    Xing R H, Wu Z, Du G Q. Risk assessment and source analysis of soil heavy metal pollution in Xuanzhou district, Anhui Province[J]. East China Geology, 2022, 43(3): 336−344. doi: 10.16788/j.hddz.32-1865/P.2022.03.009

    [3]

    尚二萍, 许尔琪, 张红旗, 等. 中国粮食主产区耕地土壤重金属时空变化与污染源分析[J]. 环境科学, 2018, 39(10): 4670−4683. doi: 10.13227/j.hjkx.201802139

    Shang E P, Xu E Q, Zhang H Q, et al. Spatial-temporal trends and pollution source analysis for heavy metal contamination of cultivated soils in five major grain producing regions of China[J]. Environmental Science, 2018, 39(10): 4670−4683. doi: 10.13227/j.hjkx.201802139

    [4]

    刘强, 项立辉, 程瑜, 等. 南京东郊沿江地区农用地土壤重金属分布特征及风险性评价[J]. 华东地质, 2021, 42(1): 37−45. doi: 10.16788/j.hddz.32-1865/P.2021.01.005

    Liu Q, Xiang L H, Cheng Y, et al. Distribution characteristics and risk assessment of the heavy metals in agricultural land along the Yangtze River in the eastern suburbs of Nanjing City[J]. East China Geology, 2021, 42(1): 37−45. doi: 10.16788/j.hddz.32-1865/P.2021.01.005

    [5]

    徐金英, 邹辉, 王经波, 等. 长江干流主要重金属污染状况及其来源解析[J]. 华东地质, 2021, 42(1): 21−28. doi: 10.16788/j.hddz.32-1865/P.2021.01.003

    Xu J Y, Zou H, Wang J B, et al. Pollution status and potential sources of main heavy metals in the main stream of the Yangtze River[J]. East China Geology, 2021, 42(1): 21−28. doi: 10.16788/j.hddz.32-1865/P.2021.01.003

    [6]

    Zhang L, Zhang J H, Li X L, et al. Adsorption behavior and mechanism of Hg(Ⅱ) on a porous core-shell copper hydroxy sulfate@MOF composite[J]. Applied Surface Science, 2021, 538: 7. doi: 10.1016/j.apsusc.2020.148054

    [7]

    Zhao Y L, Xing X L, Gao R J, et al. A highly selective and sensitive colorimetric Hg2+ sensor based on hemicyanine-functionalized polyacrylonitrile fiber[J]. Journal of Materials Science, 2018, 53(14): 10523−10533. doi: 10.1007/s10853-018-2304-6

    [8]

    Zhan W Q, Jia F F, Yuan Y, et al. Controllable incorporation of oxygen in MoS2 for efficient adsorption of Hg2+ in aqueous solutions[J]. Journal of Hazardous Materials, 2020, 384: 10. doi: 10.1016/j.jhazmat.2019.121382

    [9]

    Kang C, Gao L W, Zhu H, et al. Adsorption of Hg(Ⅱ) in solution by mercaptofunctionalized palygorskite[J]. Environmental Science and Pollution Research, 2021, 28(46): 66287−66302. doi: 10.1007/s11356-021-15637-0

    [10]

    Yakkala K, Chappa S, Rathod P B, et al. Silver nanoparticles embedded cation-exchange membrane for remediation of Hg species and application as the dip catalyst in organic transformation[J]. Materials Today Chemistry, 2021, 22: 9. doi: 10.1016/j.mtchem.2021.100547

    [11]

    Zhang X F, Yang S J, Yu B, et al. Advanced modified polyacrylonitrile membrane with enhanced adsorption property for heavy metal ions[J]. Scientific Reports, 2018, 8: 9. doi: 10.1038/s41598-017-18427-2

    [12]

    Mullapudi V B K, Garg N, Karunasagar D. Development of a novel and robust microprecipitation approach using cetyltrimethyl ammonium bromide (CTAB) for preconcentration and speciation of mercury in waters prior to CVAAS determination[J]. International Journal of Environmental Analytical Chemistry, 2018, 98(9): 811−829. doi: 10.1080/03067319.2018.1504934

    [13]

    Yuan M W, Yao H Q, Xie L X, et al. Polypyrrole-Mo3S13: An efficient sorbent for the capture of Hg2+ and highly selective extraction of Ag+ over Cu2+[J]. Journal of the American Chemical Society, 2020, 142(3): 1574−1583. doi: 10.1021/jacs.9b12196

    [14]

    Zhao Y H, Xia K, Zhang Z Z, et al. Facile synthesis of polypyrrole-functionalized CoFe2O4@SiO2 for removal for Hg(Ⅱ)[J]. Nanomaterials, 2019, 9(3): 21. doi: 10.3390/nano9030455

    [15]

    Huang L J, Shuai Q. Facile approach to prepare sulfur-functionalized magnetic amide-linked organic polymers for enhanced Hg(Ⅱ) removal from water[J]. Sustainable Chemistry & Engineering, 2019, 7(11): 9957−9965. doi: 10.1021/acssuschemeng.9b00957

    [16]

    Adibmehr M, Faghihian H. Magnetization and functionalization of activated carbon prepared by oak shell biowaste for removal of Pb2+ from aqueous solutions[J]. Chemical Engineering Communications, 2018, 205(4): 519−532. doi: 10.1080/00986445.2017.1404461

    [17]

    Jin S R, Wu C, Ying Y B, et al. Magnetically separable and recyclable bamboo-like carbon nanotube-based FRET assay for sensitive and selective detection of Hg2+[J]. Analytical and Bioanalytical Chemistry, 2020, 412(15): 3779−3786. doi: 10.1007/s00216-020-02631-7

    [18]

    赵子科, 陈春亮, 柯盛, 等. 榴莲壳和不同炭材料对低汞溶液的吸附动力学[J]. 岩矿测试, 2022, 41(1): 90−98. doi: 10.3969/j.issn.0254-5357.2022.1.ykcs202201009

    Zhao Z K, Chen C A L, Ke S, et al. Adsorption kinetics of low mercury solution with durian shell and activated carbon[J]. Rock and Mineral Analysis, 2022, 41(1): 90−98. doi: 10.3969/j.issn.0254-5357.2022.1.ykcs202201009

    [19]

    郭风, 朱桂茹, 高从堦. 有机-无机杂化介孔二氧化硅在环境保护中的应用[J]. 化学进展, 2011, 23(6): 1237−1250.

    Guo F, Zhu G R, Gao C K. Organic-inorganic hybrid mesoporous silicas and their applications in environmental protection[J]. Progress in Chemistry, 2011, 23(6): 1237−1250.

    [20]

    张帆, 李菁, 谭建华, 等. 吸附法处理重金属废水的研究进展[J]. 化工进展, 2013, 32(11): 2749−2756.

    Zhang F, Li Q, Tan J H, et al. Research progress in the treatment of heavy metal wastewater by adsorption[J]. Progress in Chemistry, 2013, 32(11): 2749−2756.

    [21]

    Wang L Z, Xiao Q, Zhang D, et al. Postfunctionalization of porous organic polymers based on friedel-crafts acylation for CO2 and Hg2+ capture[J]. ACS Applied Materials & Interfaces, 2020, 12(32): 36652−36659. doi: 10.1021/acsami.0c11180

    [22]

    Shan H C, Li S F, Yang Z, et al. Triazine-based N-rich porous covalent organic polymer for the effective detection and removal of Hg(Ⅱ) from an aqueous solution[J]. Chemical Engineering Journal, 2021, 426: 10. doi: 10.1016/j.cej.2021.130757

    [23]

    Shahzadi I, Khan Z H, Akram W, et al. Heavy metal and organic pollutants removal from water using bilayered polydopamine composite of sandwiched graphene Nanosheets: One solution for two obstacles[J]. Separation and Purification Technology, 2022, 280: 14. doi: 10.1016/j.seppur.2021.119711

    [24]

    Yang Z L, Gu Y Y, Yuan B L, et al. Thio-groups decorated covalent triazine frameworks for selective mercury removal[J]. Journal of Hazardous Materials, 2021, 403: 10. doi: 10.1016/j.jhazmat.2020.123702

    [25]

    Peng C Y, He M, Chen B B, et al. Magnetic sulfur-doped porous carbon for preconcentration of trace mercury in environmental water prior to ICP-MS detection[J]. Analyst, 2017, 142(23): 4570−4579. doi: 10.1039/C7AN01195D

    [26]

    Li Y L, Tan M X, Liu G X, et al. Thiol-functionalized metal-organic frameworks embedded with chelator-modified magnetite for high-efficiency and recyclable mercury removal in aqueous solutions[J]. Journal of Materials Chemistry A, 2022, 10(12): 6724−6730. doi: 10.1039/D1TA10906E

    [27]

    Ding L, Luo X B, Shao P H, et al. Thiol-functionalized Zr-based metal-organic framework for capture of Hg(Ⅱ) through a proton exchange reaction[J]. Sustainable Chemistry & Engineering, 2018, 6(7): 8494−8502. doi: 10.1021/acssuschemeng.8b00768

    [28]

    Ren X Y, Shi Y Z, Zheng H, et al. A novel covalent organic polymer with hierarchical pore structure for rapid and selective trace Hg(Ⅱ) removal from drinking water[J]. Separation and Purification Technology, 2022, 285: 8. doi: 10.1016/j.seppur.2021.120306

    [29]

    Huang L J, Peng C Y, Cheng Q, et al. Thiol-functionalized magnetic porous organic polymers for highly efficient removal of mercury[J]. Industrial & Engineering Chemistry Research, 2017, 56(46): 13696−13703. doi: 10.1021/acs.iecr.7b03093

    [30]

    Huang L J, Liu R Q, Yang J, et al. Nanoarchitectured porous organic polymers and their environmental applications for removal of toxic metal ions[J]. Chemical Engineering Journal, 2021, 408: 19. doi: 10.1016/j.cej.2020.127991

    [31]

    Karak S, Kumar S, Pachfule P, et al. Porosity prediction through hydrogen bonding in covalent organic frameworks[J]. Journal of the American Chemical Society, 2018, 140(15): 5138−5145. doi: 10.1021/jacs.7b13558

    [32]

    Wu R Y, Zhao K Q, Lv W J, et al. Solid-phase synthesis of Bi-functionalized porous organic polymer for simultaneous removal of Hg(Ⅱ) and Pb(Ⅱ)[J]. Microporous and Mesoporous Materials, 2021, 316: 9. doi: 10.1016/j.micromeso.2021.110942

    [33]

    周慧君, 帅琴, 黄云杰, 等. 双硫腙改性氧化石墨烯/壳聚糖复合微球固相萃取在线富集-原子荧光光谱法测定地质样品中痕量汞[J]. 岩矿测试, 2017, 36(5): 474−480, 449. doi: 10.15898/j.cnki.11-2131/td.201703010024

    Zhou H J, Shuai Q, Huang Y J, et al. On-line determination of Hg(Ⅱ) in geological samples by AFS after solid phase extraction using dithizone-modified graphene oxide/chitosan composite microspheres[J]. Rock and Mineral Analysis, 2017, 36(5): 474−480, 449. doi: 10.15898/j.cnki.11-2131/td.201703010024

    [34]

    Shetty D, Boutros S, Eskhan A, et al. Thioether-crown-rich calix 4 arene porous polymer for highly efficient removal of mercury from water[J]. Acs Applied Materials & Interfaces, 2019, 11(13): 12898−12903.

    [35]

    Wang Q Q, Dang Q F, Liu C S, et al. Novel amidinothiourea-modified chitosan microparticles for selective removal of Hg(II) in solution[J]. Carbohydrate Polymers, 2021, 269: 12.

    [36]

    Wang F, Luo H Y, Wang Q, et al. Preparation of Superhydrophobic Polymeric Film on Aluminum Plates by Electrochemical Polymerization[J]. Molecules, 2009, 14(11): 4737−4746. doi: 10.3390/molecules14114737

    [37]

    Hai N T T, Hue N T, Trung D Q. Adsorption of Hg(II) from Aqueous Solution of Activated Carbon Impregnated in Copper Chloride Solution[J]. Asian Journal of Chemistry, 2013, 25(18): 10251−10254.

    [38]

    Zhuang Y T, Jiang R, Wu D F, et al. Selenocarrageenan-inspired hybrid graphene hydrogel as recyclable adsorbent for efficient scavenging of dyes and Hg2+ in water environment[J]. Journal of Colloid and Interface Science, 2019, 540: 572−578.

    [39]

    Huang L J, He M, Chen B B, et al. A designable magnetic MOF composite and facile coordination-based post-synthetic strategy for the enhanced removal of Hg2+ from water[J]. Journal of Materials Chemistry A, 2015, 3(21): 11587−11595.

    [40]

    Ge J L, Xiao J D, Liu L L, et al. Facile microwave-assisted production of Fe3O4 decorated porous melamine-based covalent organic framework for highly selective removal of Hg2+[J]. Journal of Porous Materials, 2016, 23(3): 791−800.

  • 加载中

(7)

(3)

计量
  • 文章访问数:  536
  • PDF下载数:  32
  • 施引文献:  0
出版历程
收稿日期:  2022-11-17
修回日期:  2024-01-30
录用日期:  2024-02-07
刊出日期:  2024-04-30

目录