中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

原位吸附技术修复六价铬污染土壤

张兆鑫, 曹宁宁, 李林记, 刘素青, 李佳昊, 曹翠, 李和平, 张凯, 石勇丽. 原位吸附技术修复六价铬污染土壤[J]. 岩矿测试, 2024, 43(2): 302-314. doi: 10.15898/j.ykcs.202307090090
引用本文: 张兆鑫, 曹宁宁, 李林记, 刘素青, 李佳昊, 曹翠, 李和平, 张凯, 石勇丽. 原位吸附技术修复六价铬污染土壤[J]. 岩矿测试, 2024, 43(2): 302-314. doi: 10.15898/j.ykcs.202307090090
ZHANG Zhaoxin, CAO Ningning, LI Linji, LIU Suqing, LI Jiahao, CAO Cui, LI Heping, ZHANG Kai, SHI Yongli. In situ Adsorption Technology for Remediation of Cr(Ⅵ) Contaminated Soil[J]. Rock and Mineral Analysis, 2024, 43(2): 302-314. doi: 10.15898/j.ykcs.202307090090
Citation: ZHANG Zhaoxin, CAO Ningning, LI Linji, LIU Suqing, LI Jiahao, CAO Cui, LI Heping, ZHANG Kai, SHI Yongli. In situ Adsorption Technology for Remediation of Cr(Ⅵ) Contaminated Soil[J]. Rock and Mineral Analysis, 2024, 43(2): 302-314. doi: 10.15898/j.ykcs.202307090090

原位吸附技术修复六价铬污染土壤

  • 基金项目: 河南省科技攻关项目“基于六价铬污染场地原位修复材料开发研究”(212102310081);河南省科技攻关项目“基于水中新兴污染物精准识别检测及高效去除技术研发”(232102320125);河南省煤田地质局科研项目“黄河流域中下游耕地土壤重金属污染修复技术研发”;河南省地质研究院揭榜挂帅项目(2023-906-XM012-KT02,2023-906-XM015-KT05)
详细信息
    作者简介: 张兆鑫,硕士,工程师,主要从事水土生态修复治理工作。E-mail:hnmtzj@163.com
    通讯作者: 石勇丽,硕士,高级工程师,主要从事环境修复工作。E-mail:422081518@qq.com
  • 中图分类号: X53

In situ Adsorption Technology for Remediation of Cr(Ⅵ) Contaminated Soil

More Information
  • 常见六价铬Cr(Ⅵ)污染场地修复技术如客土法、还原法、固化法、生物法等存在成本高、效率低及Cr(Ⅵ)被二次氧化等缺点。理想修复技术应能快速、低成本地将铬元素(Cr)从土壤中彻底去除。本文将聚吡咯(PPy)通过原位聚合的方式负载在凹凸棒土(ATP)表面,制备了以PPy为“壳”和以ATP为“核”的ATP/PPy复合材料,ATP/PPy对Cr(Ⅵ)的最大吸附容量为185.19mg/g,吸附机理包括静电引力、螯合、还原与离子交换等。将ATP/PPy嵌入土壤中,利用Cr(Ⅵ)在土壤中的纵向迁移及横向浓度差渗透,可实现对土壤中Cr(Ⅵ)的原位吸附。实验考察了模拟降雨量、土壤pH、土壤容重、土壤有机质含量等因素对土壤中Cr(Ⅵ)去除效率的影响。结果表明,当供试土壤中Cr(Ⅵ)浓度为30mg/kg,模拟降雨量为6mL/天,土壤有机质含量为7.6g/kg,土壤容重为1.22g/cm3,土壤pH为5.86时,第35天时土壤滤液中Cr(Ⅵ)去除率为58.51%,土壤中Cr(Ⅵ)含量降低至2.97mg/kg,低于《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600—2018)中的建设用地第二类用地筛选值5.7mg/kg。该技术具有操作简单、经济环保、效率高、去除彻底等优势,可为污染场地的高效低成本治理提供新思路及技术支撑。

  • 加载中
  • 图 1  ATP/PPy吸附材料的制备及去除Cr(Ⅵ)机理示意图

    Figure 1. 

    图 2  ATP/PPy吸附材料表征:(a) ATP的SEM图像;(b) ATP/PPy的SEM图像;(c) ATP/PPy吸附Cr(Ⅵ)后SEM图像;(d) FTIR光谱图;(e) Zeta电位

    Figure 2. 

    图 3  ATP/PPy对Cr(Ⅵ)吸附性能研究:(a)吸附动力学;(b)吸附等温线

    Figure 3. 

    图 4  原位吸附技术去除土壤中Cr(Ⅵ)研究:(a) 原位吸附技术去除土壤中Cr(Ⅵ)示意图; (b) 模拟降雨量为76mm(6mL/天)时,ATP/PPy对滤液中Cr(Ⅵ)浓度的影响,左侧柱子为添加20mg的ATP/PPy,右侧柱子为未添加吸附材料;(c) 模拟降雨量对ATP/PPy去除滤液中Cr(Ⅵ)的影响;(d) 土壤容重对ATP/PPy去除滤液中Cr(Ⅵ)的影响;(e) 土壤中有机质含量对ATP/PPy去除滤液中Cr(Ⅵ)的影响;(f) 土壤pH对ATP/PPy去除滤液中Cr(Ⅵ)的影响

    Figure 4. 

    图 5  XPS光谱分析:(a) ATP/PPy吸附Cr(Ⅵ)前后的宽扫描XPS光谱;(b) Cr 2p光谱;(c) N 1s谱;(d) Cl 2p光谱

    Figure 5. 

  • [1]

    褚琳琳, 王静云, 金晓霞, 等. 碱溶液提取-离子交换-电感耦合等离子体质谱法测定土壤中六价铬[J]. 岩矿测试, 2022, 41(5): 826−835.

    Chu L L, Wang J Y, Jin X X, et al. Determination of hexavalent chromium in soil by inductively coupled plasma-mass spectrometry with alkaline digestion-ion exchange[J]. Rock and Mineral Analysis, 2022, 41(5): 826−835.

    [2]

    Ertani A, Mietto A, Borin M, et al. Chromium in agricultural soils and crops: A review[J]. Water, Air, & Soil Pollution, 2017, 228: 1-12.

    [3]

    Hausladen D M, Alexander-Ozinskas A, McClain C, et al. Hexavalent chromium sources and distribution in California groundwater[J]. Environmental Science & Technology, 2018, 52(15): 8242−8251.

    [4]

    Coetzee J J, Bansal N, Chirwa E M N. Chromium in environment, its toxic effect from chromite-mining and ferrochrome industries, and its possible bioremediation[J]. Exposure and Health, 2020, 12: 51−62. doi: 10.1007/s12403-018-0284-z

    [5]

    石勇丽, 夏辉, 曹宁宁, 等. 碱液提取-树脂除盐结合电感耦合等离子体发射光谱法测定土壤中Cr(Ⅵ)[J]. 分析科学学报, 2021, 37(6): 771−776.

    Shi Y L, Xia H, Cao N N, et al. Determination of Cr(Ⅵ) in soil by lye extraction-resin desalination combined with ICP-OES[J]. Journal of Analytical Science, 2021, 37(6): 771−776.

    [6]

    Kerur S S, Bandekar S, Hanagadakar M S, et al. Removal of hexavalent chromium-industry treated water and wastewater: A review[J]. Materials Today:Proceedings, 2021, 42: 1112−1121. doi: 10.1016/j.matpr.2020.12.492

    [7]

    Monga A, Fulke A B, Dasgupta D. Recent developments in essentiality of trivalent chromium and toxicity of hexavalent chromium: Implications on human health and remediation strategies[J]. Journal of Hazardous Materials Advances, 2022, 7: 100113. doi: 10.1016/j.hazadv.2022.100113

    [8]

    Sharma P, Singh S P, Parakh S K, et al. Health hazards of hexavalent chromium [Cr(Ⅵ)] and its microbial reduction[J]. Bioengineered, 2022, 13(3): 4923−4938. doi: 10.1080/21655979.2022.2037273

    [9]

    Marinho B A, Cristóvão R O, Boaventura R A R, et al. As(Ⅲ) and Cr(Ⅵ) oxyanion removal from water by advanced oxidation/reduction processes—A review[J]. Environmental Science and Pollution Research, 2019, 26: 2203−2227. doi: 10.1007/s11356-018-3595-5

    [10]

    邓日欣, 罗伟嘉, 韩奕彤, 等. 膨润土负载纳米铁镍同步修复地下水中三氯乙烯和六价铬复合污染[J]. 岩矿测试, 2018, 37(5): 541−548.

    Deng R X, Luo W J, Han Y T, et al. Simultaneous removal of TCE and Cr(Ⅵ) in groundwater by using bentonite-supported nanoscale Fe/Ni[J]. Rock and Mineral Analysis, 2018, 37(5): 541−548.

    [11]

    Suzuki T, Kawai K, Moribe M, et al. Recovery of Cr as Cr(Ⅲ) from Cr(Ⅵ)-contaminated kaolinite clay by electrokinetics coupled with a permeable reactive barrier[J]. Journal of Hazardous Materials, 2014, 278: 297−303. doi: 10.1016/j.jhazmat.2014.05.086

    [12]

    Xia S, Song Z, Jeyakumar P, et al. Characteristics and applications of biochar for remediating Cr(Ⅵ)-contaminated soils and wastewater[J]. Environmental Geochemistry and Health, 2020, 42: 1543−1567. doi: 10.1007/s10653-019-00445-w

    [13]

    杨文晓, 张丽, 毕学, 等. 六价铬污染场地土壤稳定化修复材料研究进展[J]. 环境工程, 2020, 38(6): 16−23.

    Yang W X, Zhang L, Bi X, et al. Research advancement of stabilization materials for hexavalent chromium(Ⅵ) contaminated site soils[J]. Environmental Engineering, 2020, 38(6): 16−23.

    [14]

    刘益风, 李洁, 申源源, 等. 重庆某六价铬污染场地土壤修复工程案例[J]. 广州化工, 2019, 47(12): 111−114. doi: 10.3969/j.issn.1001-9677.2019.12.040

    Liu Y F, Li J, Shen Y Y, et al. Soil remediation engineering instances of a hexavalent chromium contaminated site in Chongqing[J]. Guangzhou Chemical Industry, 2019, 47(12): 111−114. doi: 10.3969/j.issn.1001-9677.2019.12.040

    [15]

    安茂国, 赵庆令, 谭现锋, 等. 化学还原-稳定化联合修复铬污染场地土壤的效果研究[J]. 岩矿测试, 2019, 38(2): 204−211

    An M G, Zhao Q L, Tan X F, et al. Research on the effect of chemical reduction-stabilization combined remediation of contaminated soil[J]. Rock and Mineral Analysis, 2019, 38(2): 204−211.

    [16]

    曹宁宁, 李林记, 石勇丽, 等. 土壤六价铬污染修复技术研究进展与应用探讨[J]. 磷肥与复肥, 2023, 38(4): 42−48. doi: 10.3969/j.issn.1007-6220.2023.04.014

    Cao N N, Li L J, Shi Y L, et al. Research progress and application discussion on remediation technology of Cr(Ⅵ) contaminated soil[J]. Phosphate & Compound Fertilize, 2023, 38(4): 42−48. doi: 10.3969/j.issn.1007-6220.2023.04.014

    [17]

    Liu L, Li X, Wang X, et al. Metolachlor adsorption using walnut shell biochar modified by soil minerals[J]. Environmental Pollution, 2022, 308: 119610. doi: 10.1016/j.envpol.2022.119610

    [18]

    Qiu M, Liu L, Ling Q, et al. Biochar for the removal of contaminants from soil and water: A review[J]. Biochar, 2022, 4(1): 19. doi: 10.1007/s42773-022-00146-1

    [19]

    Li A, Ge W, Liu L, et al. Synthesis and application of amine-functionalized MgFe2O4-biochar for the adsorption and immobilization of Cd(Ⅱ) and Pb(Ⅱ)[J]. Chemical Engineering Journal, 2022, 439: 135785. doi: 10.1016/j.cej.2022.135785

    [20]

    Li Y, Gao Y, Zhang Q, et al. Flexible and free-standing pristine polypyrrole membranes with a nanotube structure for repeatable Cr(Ⅵ) ion removal[J]. Separation and Purification Technology, 2021, 258: 117981. doi: 10.1016/j.seppur.2020.117981

    [21]

    Mahmud H N M E, Huq A K O, Yahya R B. The removal of heavy metal ions from wastewater/aqueous solution using polypyrrole-based adsorbents: A review[J]. RSC Advances, 2016, 6(18): 14778−14791. doi: 10.1039/C5RA24358K

    [22]

    Xiang L, Niu C G, Tang N, et al. Polypyrrole coated molybdenum disulfide composites as adsorbent for enhanced removal of Cr(Ⅵ) in aqueous solutions by adsorption combined with reduction[J]. Chemical Engineering Journal, 2021, 408: 127281. doi: 10.1016/j.cej.2020.127281

    [23]

    张凯. 凹凸棒土棒晶束解离研究[D]. 郑州: 郑州大学, 2019.

    Zhang K. Researches of crystal-bundles dissociation of palygorskite[D]. Zhengzhou: Zhengzhou University, 2019.

    [24]

    化全县, 郝志远, 张凯, 等. 水热酸处理解离凹凸棒土晶束的研究[J]. 应用化工, 2020, 49(8): 1904−1908. doi: 10.3969/j.issn.1671-3206.2020.08.008

    Hua Q X, Hao Z Y, Zhang K, et al. Study on attapulgite crystal bundles dissociation by hydrothermal acid technology[J]. Applied Chemical Industry, 2020, 49(8): 1904−1908. doi: 10.3969/j.issn.1671-3206.2020.08.008

    [25]

    陈泳. 具有选择吸附作用的聚吡咯/凹凸棒复合材料吸附性能[D]. 兰州: 兰州理工大学, 2018.

    Chen Y. The adsorption properties of polypyrrole/attapulgite composites with selective adsorption[D]. Lanzhou: Lanzhou University of Technology, 2018.

    [26]

    Wang L, Muhammad H, Laipan M, et al. Enhanced removal of Cr(Ⅵ) and Mo(Ⅵ) from polluted water using L-cysteine doped polypyrrole/bentonite composite[J]. Applied Clay Science, 2022, 217: 106387. doi: 10.1016/j.clay.2021.106387

    [27]

    Yu H, Chen H, Zhang P, et al. In situ self-sacrificial synthesis of polypyrrole/biochar composites for efficiently removing short- and long-chain perfluoroalkyl acid from contaminated water[J]. Journal of Environmental Management, 2023, 344: 118745. doi: 10.1016/j.jenvman.2023.118745

    [28]

    Chen S, Yue Q, Gao B, et al. Equilibrium and kinetic adsorption study of the adsorptive removal of Cr(Ⅵ) using modified wheat residue[J]. Journal of Colloid and Interface Science, 2010, 349(1): 256−264. doi: 10.1016/j.jcis.2010.05.057

    [29]

    Zhang K, Dai Z, Zhang W, et al. EDTA-based adsorbents for the removal of metal ions in wastewater[J]. Coordination Chemistry Reviews, 2021, 434: 213809. doi: 10.1016/j.ccr.2021.213809

    [30]

    Zhao S, Li Z, Wang H, et al. Effective removal and expedient recovery of As(Ⅴ) and Cr(Ⅵ) from soil by layered double hydroxides coated waste textile[J]. Separation and Purification Technology, 2021, 263: 118419. doi: 10.1016/j.seppur.2021.118419

    [31]

    Yang D, Wang L, Li Y, et al. Pseudocapacitive deionization of high concentrations of hexavalent chromium using NiFe-layered double hydroxide/polypyrrole asymmetric electrode[J]. Separation and Purification Technology, 2024, 328: 125004. doi: 10.1016/j.seppur.2023.125004

    [32]

    Ren Z, Xu X, Wang X, et al. FTIR, Raman, and XPS analysis during phosphate, nitrate and Cr(Ⅵ) removal by amine cross-linking biosorbent[J]. Journal of Colloid and Interface Science, 2016, 468: 313−323. doi: 10.1016/j.jcis.2016.01.079

    [33]

    Deng L, Liu F, Ding Z, et al. Effect of natural organic matter on Cr(Ⅵ) reduction by reduced nontronite[J]. Chemical Geology, 2023, 615: 121198. doi: 10.1016/j.chemgeo.2022.121198

    [34]

    Ambika S, Kumar M, Pisharody L, et al. Modified biochar as a green adsorbent for removal of hexavalent chromium from various environmental matrices: Mechanisms, methods, and prospects[J]. Chemical Engineering Journal, 2022, 439: 135716. doi: 10.1016/j.cej.2022.135716

    [35]

    Zhang Y, Liu J, Wu X, et al. Ultrasensitive detection of Cr(Ⅵ)(Cr2O72−/CrO42−) ions in water environment with a fluorescent sensor based on metal-organic frameworks combined with sulfur quantum dots[J]. Analytica Chimica Acta, 2020, 1131: 68−79. doi: 10.1016/j.aca.2020.07.026

    [36]

    Xu Y, Chen J, Chen R, et al. Adsorption and reduction of chromium(Ⅵ) from aqueous solution using polypyrrole/calcium rectorite composite adsorbent[J]. Water Research, 2019, 160: 148−157. doi: 10.1016/j.watres.2019.05.055

    [37]

    Ko Y J, Choi K, Lee S, et al. Strong chromate-adsorbent based on pyrrolic nitrogen structure: An experimental and theoretical study on the adsorption mechanism[J]. Water Research, 2018, 145: 287−296. doi: 10.1016/j.watres.2018.08.033

    [38]

    Qiu L, Wang Y, Sui R, et al. Preparation of a novel metal-free polypyrrole-red phosphorus adsorbent for efficient removal of Cr(Ⅵ) from aqueous solution[J]. Environmental Research, 2023, 224: 115458. doi: 10.1016/j.envres.2023.115458

    [39]

    Zhou F, Li Y, Wang S, et al. Turning waste into valuables: In situ deposition of polypyrrole on the obsolete mask for Cr(Ⅵ) removal and desalination[J]. Separation and Purification Technology, 2023, 306: 122643. doi: 10.1016/j.seppur.2022.122643

    [40]

    Xing J, Zhu C, Chowdhury I, et al. Electrically switched ion exchange based on polypyrrole and carbon nanotube nanocomposite for the removal of chromium(Ⅵ) from aqueous solution[J]. Industrial & Engineering Chemistry Research, 2018, 57(2): 768−774.

    [41]

    Shi Y, Feng J, Zhang Z, et al. Simultaneous removal of Cr(Ⅵ) anions and metal cations by EDTA-crosslinking-chitosan/polypyrrole composites[J]. Separation and Purification Technology, 2023, 327: 124926. doi: 10.1016/j.seppur.2023.124926

  • 加载中

(5)

计量
  • 文章访问数:  943
  • PDF下载数:  51
  • 施引文献:  0
出版历程
收稿日期:  2023-07-09
修回日期:  2023-12-01
录用日期:  2024-02-05
刊出日期:  2024-04-30

目录