中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

低温剥蚀LA-ICP-MS准确测定硫化物矿物多元素分析研究

李会来, 李凡, 张鼎文, 郭伟, 靳兰兰, 胡圣虹. 低温剥蚀LA-ICP-MS准确测定硫化物矿物多元素分析研究[J]. 岩矿测试, 2023, 42(5): 970-982. doi: 10.15898/j.ykcs.202308290144
引用本文: 李会来, 李凡, 张鼎文, 郭伟, 靳兰兰, 胡圣虹. 低温剥蚀LA-ICP-MS准确测定硫化物矿物多元素分析研究[J]. 岩矿测试, 2023, 42(5): 970-982. doi: 10.15898/j.ykcs.202308290144
LI Huilai, LI Fan, ZHANG Dingwen, GUO Wei, JIN Lanlan, HU Shenghong. Multi-element Accurate Analysis of Sulfide Minerals by Low-temperature Ablation LA-ICP-MS[J]. Rock and Mineral Analysis, 2023, 42(5): 970-982. doi: 10.15898/j.ykcs.202308290144
Citation: LI Huilai, LI Fan, ZHANG Dingwen, GUO Wei, JIN Lanlan, HU Shenghong. Multi-element Accurate Analysis of Sulfide Minerals by Low-temperature Ablation LA-ICP-MS[J]. Rock and Mineral Analysis, 2023, 42(5): 970-982. doi: 10.15898/j.ykcs.202308290144

低温剥蚀LA-ICP-MS准确测定硫化物矿物多元素分析研究

  • 基金项目: 国家重点研发计划项目(2021YFC2903000)课题“战略性矿产微区原位分析技术及应用”
详细信息
    作者简介: 李会来,博士研究生,地球化学专业。E-mail:191455426@qq.com
    通讯作者: 胡圣虹,教授,博士生导师,主要从事分析化学、分析地球化学的教学与研究工作。E-mail:shhu@cug.edu.cn
  • 中图分类号: O657.63; P578.2

Multi-element Accurate Analysis of Sulfide Minerals by Low-temperature Ablation LA-ICP-MS

More Information
  • 硫化物矿物中元素含量及其分布可示踪硫化物成矿过程、辨别金属来源和沉积过程的物理化学条件,在地质学、矿床学等领域具有重要的应用价值。激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)已成功应用于硫化物矿物元素微区分析研究,但激光与物质作用产生的热效应严重制约分析结果的可靠性。本文建立了一种高精密度、高准确度的低温剥蚀LA-ICP-MS测定硫化物矿物多元素方法。采用自行研制的Peltier低温剥蚀池可有效抑制硫化物矿物LA-ICP-MS分析中的热效应,提高分析结果的精密度和准确度。扫描电子显微镜(SEM)表明:在低温(−30℃)条件下可在一定程度地抑制激光剥蚀引起的热效应,减少样品熔化和气溶胶气相再沉积;而通过气溶胶颗粒分析发现低温剥蚀可以减小样品气溶胶颗粒的平均尺寸,得到的颗粒粒径分布范围也较小。不同元素信号强度的精密度(RSD)从常温下的20.1%~34.4%改善到11.5%~15.8%,元素的检出限为0.054~0.077μg/g。将该低温LA-ICP-MS系统应用于实验室内部标样黄铜矿Ccp-1分析,测定值与参考值之间的标准偏差在7%以内。

  • 加载中
  • 图 1  低温剥蚀池结构示意图

    Figure 1. 

    图 2  MASS-1在不同剥蚀温度下的剥蚀信号对比情况

    Figure 2. 

    图 3  硫化物矿物在不同剥蚀温度下剥蚀形貌的扫描电子显微镜图

    Figure 3. 

    图 4  收集MASS-1在不同温度下激光剥蚀后气溶胶颗粒的扫描电子显微镜图

    Figure 4. 

    图 5  收集MASS-1在不同温度下激光剥蚀后气溶胶颗粒的粒径分布图

    Figure 5. 

    图 6  低温剥蚀池在不同激光条件下(a)能量密度和(b)剥蚀斑径的性能对比(样品为MASS-1)

    Figure 6. 

    表 1  LA-ICP-MS仪器工作参数

    Table 1.  The operating conditions of LA-ICP-MS.

    电感耦合等离子体质谱
    ICP-MS(7700x)
    激光剥蚀系统
    Laser system(GeoLas HD)
    参数 工作条件 参数 工作条件
    RF功率 1550W 激光波长 193nm
    反馈功率 8W 能量密度 6J/cm2
    RF电压 1.60W 剥蚀斑径 60μm
    采样深度 7.5mm 激光频率 5Hz
    载气(Ar)流速 0.85L/min 剥蚀气(He)流速 0.4L/min
    元素 55Mn,57Fe,59Co,60Ni,63Cu,66Zn,71Ga,74Ge,75As,111Cd,208Pb
    下载: 导出CSV

    表 2  黄铜矿Ccp-1中多元素分析结果(n=3)

    Table 2.  The results of elemental analysis in Ccp-1 (n=3).

    元素 参考值
    (μg/g)
    测定值(−30℃ )
    (μg/g)
    测定值(20℃ )
    (μg/g)
    Mn 7.35±0.43 7.23±0.55 6.15±0.92
    Co 5.30±0.36 5.15±0.36 4.76±0.66
    Ni 7.75±0.64 7.44±0.53 6.64±0.96
    Ga 8.20±0.56 8.34±0.63 7.31±1.25
    Ge 8.53±1.29 8.47±0.66 6.82±1.37
    As 16.51±1.19 16.96±1.32 13.47±2.56
    Cd 0.24±0.01 0.26±0.03 0.21±0.05
    下载: 导出CSV

    表 3  硫化物矿物的元素分析结果(n=3)

    Table 3.  The analytical results of elements in sulfide samples (n=3)

    元素 黄铁矿-1 黄铁矿-2 黄铁矿-3
    测定值
    (μg/g)
    SD
    (μg/g)
    参考值
    (μg/g)
    测定值
    (μg/g)
    SD
    (μg/g)
    参考值*
    (μg/g)
    测定值
    (μg/g)
    SD
    (μg/g)
    参考值*
    (μg/g)
    Mn 2.62 0.03 2.68 12.85 1.38 13.58 23.98 0.65 24.69
    Co 42.04 2.53 43.76 50.07 5.91 53.1 57.25 2.68 59.33
    Ni 247.2 12.11 256.36 256.04 37.01 273.86 257.58 10.29 266.36
    Ga 2.95 0.18 2.89 15.76 1.23 14.66 29.61 1.44 28.72
    Ge 48.05 4.65 47.25 45.97 23.14 39.04 42.03 2.5 41.04
    As 13 1.92 11.26 24.77 3.36 23.49 36.52 5.72 35.01
    Cd 0.09 0.01 0.09 0.55 0.03 0.56 1.05 0.09 1.07
    元素 方铅矿-1 方铅矿-2 方铅矿-3
    测定值
    (μg/g)
    SD
    (μg/g)
    参考值*
    (μg/g)
    测定值
    (μg/g)
    SD
    (μg/g)
    参考值*
    (μg/g)
    测定值
    (μg/g)
    SD
    (μg/g)
    参考值*
    (μg/g)
    Mn 0.47 0.06 0.5 3.52 0.53 3.77 7.1 0.53 7.42
    Co 0.37 0.05 0.41 2.7 0.21 2.82 5.58 0.26 5.78
    Ni 0.52 0.06 0.55 3.29 0.52 3.72 7.89 0.84 10.92
    Ga 0.64 0.06 0.63 4.93 0.35 5.15 10.59 0.53 10.81
    Ge 0.57 0.06 0.48 4.39 0.12 3.62 9.65 0.47 7.33
    As 0.48 0.03 0.42 3.9 0.58 3.54 7.34 0.47 8.69
    Cd 0.04 0.01 0.04 0.24 0.04 0.24 0.48 0.09 0.49
    元素 闪锌矿-1 闪锌矿-2 闪锌矿-3
    测定值
    (μg/g)
    SD
    (μg/g)
    参考值*
    (μg/g)
    测定值
    (μg/g)
    SD
    (μg/g)
    参考值*
    (μg/g)
    测定值
    (μg/g)
    SD
    (μg/g)
    参考值*
    (μg/g)
    Mn 2.86 0.42 3.2 12.41 0.56 12.85 25.14 3.76 26.93
    Co 0.93 0.03 0.96 8.64 0.47 8.98 17.49 1.73 18.44
    Ni 18.75 2.93 20.23 9.89 0.88 10.36 21.08 8.61 24.44
    Ga 1.46 0.18 1.49 14.19 0.53 14.48 28.49 2.23 28.31
    Ge 0.84 0.11 0.96 10.03 1.36 10.3 18.49 0.74 17.96
    As 4.91 0.67 5.01 16.45 2.15 16.79 28.54 3.96 29.12
    Cd 1.82 0.18 1.86 2.09 0.09 2.13 2.47 0.35 2.52
    注:“*”表示硫化物实际样品的元素浓度参考值由ICP-MS测试得到。
    下载: 导出CSV
  • [1]

    Cook N J, Ciobanu C L, Pring A, et al. Trace and minor elements in sphalerite: A LA-ICPMS study[J]. Geochimica et Cosmochimica Acta, 2009, 73: 4761−4791. doi: 10.1016/j.gca.2009.05.045

    [2]

    Zhao H X, Frimmel H E, Jiang S Y, et al. LA-ICP-MS trace element analysis of pyrite from the Xiaoqinling gold district, China: Implications for ore genesis[J]. Ore Geology Reviews, 2011, 43: 142−153. doi: 10.1016/j.oregeorev.2011.07.006

    [3]

    Deol S, Deb M, Large R R, et al. LA-ICPMS and EPMA studies of pyrite, arsenopyrite and loellingite from the Bhukia—Jagpura gold prospect, Southern Rajasthan, India: Implications for ore genesis and gold remobilization[J]. Chemical Geology, 2012, 326-327: 72−87. doi: 10.1016/j.chemgeo.2012.07.017

    [4]

    闫巧娟, 魏小燕, 叶美芳, 等. 激光剥蚀电感耦合等离子体质谱-电子探针分析白山堂铜矿中的黄铁矿成分[J]. 岩矿测试, 2016, 35(6): 658−666. doi: 10.15898/j.cnki.11-2131/td.2016.06.013

    Yan Q J, Wei X Y, Ye M F, et al. Determination of composition of pyrite in the Baishantang copper deposit by laser ablation-inductively coupled plasma-mass spectrometry and electron microprobe[J]. Rock and Mineral Analysis, 2016, 35(6): 658−666. doi: 10.15898/j.cnki.11-2131/td.2016.06.013

    [5]

    Ma X H, Zeng Q W, Tao S Y, et al. Mineralogical characteristics and in-situ sulfur isotopic analysis of gold-bearing sulfides from the Qilishan gold deposit in the Jiaodong Peninsula, China[J]. Journal of Earth Science, 2021, 32(1): 116−126. doi: 10.1007/s12583-020-1370-2

    [6]

    Zhou C, Yang Z, Sun H, et al. LA-ICP-MS trace element analysis of sphalerite and pyrite from the Beishan Pb-Zn ore district, South China: Implications for ore genesis[J]. Ore Geology Reviews, 2022, 150: 105128. doi: 10.1016/j.oregeorev.2022.105128

    [7]

    张效瑞, 吴柏林, 雷安贵, 等. 砂岩型铀矿成矿期与非成矿期黄铁矿的微区原位Pb同位素识别特征[J]. 岩矿测试, 2022, 41(5): 717−732.

    Zhang X R, Wu B L, Lei A G, et al. In-situ micro-scale Pb isotope identification characteristics of metallogenic and non-metallogenic pyrites in sandstone-type uranium deposits[J]. Rock and Mineral Analysis, 2022, 41(5): 717−732.

    [8]

    Zhang Y Y, Chu F Y, Li Z G, et al. Gold enrichment in hydrothermal sulfifides from the Okinawa Trough: An in situ LA-ICP-MS study[J]. Ore Geology Reviews, 2020, 116: 103255. doi: 10.1016/j.oregeorev.2019.103255

    [9]

    Yang W W, Zhao H, Zhang W, et al. A simple method for the preparation of homogeneous and stable solid powder standards: Application to sulfide analysis by LA-ICP-MS[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2021, 178: 106124. doi: 10.1016/j.sab.2021.106124

    [10]

    Qi Y Q, Hu R Z, Gao J F, et al. Trace and minor elements in sulfides from the Lengshuikeng Ag-Pb-Zn deposit, South China: A LA-ICP-MS study[J]. Ore Geology Reviews, 2022, 141: 104663. doi: 10.1016/j.oregeorev.2021.104663

    [11]

    Yang Q, Zhang X J, Ulrich T, et al. Trace element compositions of sulfides from Pb-Zn deposits in the Northeast Yunnan and Northwest Guizhou Provinces, SW China: Insights from LA-ICP-MS analyses of sphalerite and pyrite[J]. Ore Geology Reviews, 2022, 141: 104639. doi: 10.1016/j.oregeorev.2021.104639

    [12]

    员媛娇, 范成龙, 吕喜平, 等. 电子探针和LA-ICP-MS技术研究内蒙古浩尧尔忽洞金矿床毒砂矿物学特征[J]. 岩矿测试, 2022, 41(2): 211−225. doi: 10.3969/j.issn.0254-5357.2022.2.ykcs202202007

    Yuan Y J, Fan C L, Lyu X P, et al. Application of EPMA and LA-ICP-MS to study mineralogy of arsenopyrite from the Haoyaoerhudong gold deposit[J]. Rock and Mineral Analysis, 2022, 41(2): 211−225. doi: 10.3969/j.issn.0254-5357.2022.2.ykcs202202007

    [13]

    Watling R J, Herbert H K, Abell I D. The application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to the analysis of selected sulphide minerals[J]. Chemical Geology, 1995, 124: 67−81. doi: 10.1016/0009-2541(95)00025-H

    [14]

    Watling R J. In-line mass transport measurement cell for improving quantification in sulfide mineral analysis using laser ablation inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 1998, 13: 927−934. doi: 10.1039/a800337h

    [15]

    吴石头, 许春雪, 肖益林, 等. 193nm ArF准分子激光系统对LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率探究[J]. 岩矿测试, 2017, 36(5): 451−459.

    Wu S T, Xu C X, Xiao Y L, et al. Study on ablation behaviors and ablation rates of a 193nm ArF excimer laser system for selected substrates in LA-ICP-MS analysis[J]. Rock and Mineral Analysis, 2017, 36(5): 451−459.

    [16]

    Bacon J R, Crain J S, Vaeck L V, et al. Atomic mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 1999, 14: 1633−1659. doi: 10.1039/a905419g

    [17]

    Günther D, Horn I, Hattendorf B. Recent trends and developments in laser ablation ICP mass spectrometry[J]. Fresenius Journal of Analytical Chemistry, 2000, 368: 4−14. doi: 10.1007/s002160000495

    [18]

    Hergenröder R. Laser-generated aerosols in laser ablation for inductively coupled plasma spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2006, 61: 284−300. doi: 10.1016/j.sab.2006.02.001

    [19]

    Guillong M, Horn I, Günther D. A comparison of 266nm, 213nm and 193nm produced from a single solid state Nd: YAG laser for laser ablation ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2003, 18: 1224−1230. doi: 10.1039/B305434A

    [20]

    Günther D, Heinrich C A. Comparison of the ablation behaviour of 266nm Nd: YAG and 193nm ArF excimer lasers for LA-ICP-MS analysis[J]. Journal of Analytical Atomic Spectrometry, 1999, 14: 1369−1374. doi: 10.1039/A901649J

    [21]

    Liu Y S, Hu Z C, Li M, et al. Applications of LA-ICP-MS in the elemental analyses of geological samples[J]. Chinese Science Bulletin, 2013, 58: 3863−3878. doi: 10.1007/s11434-013-5901-4

    [22]

    Fernández B, Claverie F, Pécheyran C, et al. Direct analysis of solid samples by fs-LA-ICP-MS[J]. Trends in Analytical Chemistry, 2007, 26: 951−966. doi: 10.1016/j.trac.2007.08.008

    [23]

    柯于球, 张路远, 柴辛娜, 等. 硫化物矿物 LA-ICP-MS 激光剥蚀元素信号响应[J]. 高等学校化学学报, 2012, 33(2): 257−262. doi: 10.3969/j.issn.0251-0790.2012.02.008

    Ke Y Q, Zhang L Y, Chai X N, et al. Elemental signal response of sulfide minerals in LA-ICP-MS microanalysis[J]. Chemical Journal of Chinese Universities, 2012, 33(2): 257−262. doi: 10.3969/j.issn.0251-0790.2012.02.008

    [24]

    Kuhn H R, Günther D. Laser ablation-ICP-MS: Particle size dependent elemental composition studies on fifilter-collected and online measured aerosols from glass[J]. Journal of Analytical Atomic Spectrometry, 2004, 19: 1158−1164. doi: 10.1039/B404729J

    [25]

    Mueller W, Shelley J, Rasmussen S. Direct chemical analysis of frozen ice cores by UV-laser ablation ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2011, 26: 2391−2395. doi: 10.1039/c1ja10242g

    [26]

    Guillong M, Heinrich C A. Sensitivity enhancement in laser ablation ICP-MS using small amounts of hydrogen in the carrier gas[J]. Journal of Analytical Atomic Spectrometry, 2007, 22: 1488−1494. doi: 10.1039/b709489b

    [27]

    Bogaerts A, Chen Z, Gijbels R, et al. Laser ablation for analytical sampling: What can we learn from modeling[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2003, 58: 1867−1893. doi: 10.1016/j.sab.2003.08.004

    [28]

    Poitrasson F, Mao X L, Mao S S, et al. Comparison of ultraviolet femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry analysis in glass, monazite, and zircon[J]. Analytical Chemistry, 2003, 75: 6184−6190. doi: 10.1021/ac034680a

    [29]

    Liu C, Mao X L, Mao S S, et al. Nanosecond and femtosecond laser ablation of brass: Particulate and ICPMS measurements[J]. Analytical Chemistry, 2004, 76: 379−383. doi: 10.1021/ac035040a

    [30]

    Telouk P, Rose-Koga E F, Albarede F. Preliminary results from a new 157nm laser ablation ICP-MS instrument: New opportunities in the analysis of solid samples[J]. Geostandards and Geoanalytical Research, 2003, 27: 5−11. doi: 10.1111/j.1751-908X.2003.tb00708.x

    [31]

    Wohlgemuth-Ueberwasser C C, Jochum K P. Capability of fs-LA-ICP-MS for sulfide analysis in comparison to ns-LA-ICP-MS: Reduction of laser induced matrix effects[J]. Journal of Analytical Atomic Spectrometry, 2015, 30: 2469−2480. doi: 10.1039/C5JA00251F

    [32]

    Reinhardt H, Kriews M, Miller H, et al. Laser ablation inductively coupled plasma mass spectrometry: A new tool for trace element analysis in ice cores[J]. Fresenius Journal of Analytical Chemistry, 2001, 370(5): 629−636. doi: 10.1007/s002160100853

    [33]

    Feldmann J, Kindness A, Ek P. Laser ablation of soft tissue using a cryogenically cooled ablation cell[J]. Journal of Analytical Atomic Spectrometry, 2002, 17(8): 813−818. doi: 10.1039/b201960d

    [34]

    Wang Y, Wei X, Liu J H, et al. Cryogenic laser ablation in a rapid cooling chamber ensures excellent elemental imaging in fresh biological tissues[J]. Analytical Chemistry, 2022, 94(23): 8547−8553. doi: 10.1021/acs.analchem.2c01736

    [35]

    Li F, Lei X Q, Li H L, et al. Direct multi-elemental analysis of whole blood samples by LA-ICP-MS employing a cryogenic ablation cell[J]. Journal of Analytical Atomic Spectrometry, 2023, 38: 90−96. doi: 10.1039/D2JA00282E

    [36]

    Li F, Cui H, Zhang D W, et al. Direct multi-elemental analysis of cerebrospinal fuid samples by LA−ICP−MS employing an aerosol local extraction cryogenic ablation cell[J]. Journal of Analytical and Bioanalytical Chemistry, 2023, 415: 6051−6061. doi: 10.1007/s00216-023-04878-2

    [37]

    Wilson S A, Ridley W I, Koenig A E. Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique[J]. Journal of Analytical Atomic Spectrometry, 2002, 17: 406−409. doi: 10.1039/B108787H

    [38]

    Jarošová M, Walaszek D, Wagner B, et al. Influence of temperature on laser ablation fractionation during ICP-MS analysis for 213nm and 266nm laser wavelength micro-sampling[J]. Journal of Analytical Atomic Spectrometry, 2016, 31: 2089−2093. doi: 10.1039/C6JA00182C

    [39]

    Koch J, von Bohlen A, Hergenröder R, et al. Particle size distributions and compositions of aerosols produced by near-IR femto- and nanosecond laser ablation of brass[J]. Journal of Analytical Atomic Spectrometry, 2004, 19: 267−272. doi: 10.1039/B310512A

    [40]

    Li Z, Hu Z C, Günther D, et al. Ablation characteristic of ilmenite using UV nanosecond and femtosecond lasers: Implications for non-matrix-matched quantification[J]. Geostand Geoanalytical Research, 2016, 40: 477−491. doi: 10.1111/ggr.12117

    [41]

    Longerich H P, Günther D, Jackson S E. Elemental fractionation in laser ablation inductively coupled plasma mass spectrometry[J]. Fresenius Journal of Analytical Chemistry, 1996, 355: 538−542. doi: 10.1007/s0021663550538

  • 加载中

(6)

(3)

计量
  • 文章访问数:  1082
  • PDF下载数:  96
  • 施引文献:  0
出版历程
收稿日期:  2023-08-14
修回日期:  2023-09-06
录用日期:  2023-09-16
刊出日期:  2023-10-31

目录