中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

高空间分辨率LA-ICP-MS测定硅酸盐玻璃标准物质中42种微量元素

何焘, 张晨西, 张文, 冯彦同, 梁婷, 邱晓云, 曹慧, 胡兆初. 高空间分辨率LA-ICP-MS测定硅酸盐玻璃标准物质中42种微量元素[J]. 岩矿测试, 2023, 42(5): 983-995. doi: 10.15898/j.ykcs.202308090134
引用本文: 何焘, 张晨西, 张文, 冯彦同, 梁婷, 邱晓云, 曹慧, 胡兆初. 高空间分辨率LA-ICP-MS测定硅酸盐玻璃标准物质中42种微量元素[J]. 岩矿测试, 2023, 42(5): 983-995. doi: 10.15898/j.ykcs.202308090134
HE Tao, ZHANG Chenxi, ZHANG Wen, FENG Yantong, LIANG Ting, QIU Xiaoyun, CAO Hui, HU Zhaochu. Determination of 42 Trace Elements in Silicate Glass Reference Materials by High Spatial Resolution LA-ICP-MS[J]. Rock and Mineral Analysis, 2023, 42(5): 983-995. doi: 10.15898/j.ykcs.202308090134
Citation: HE Tao, ZHANG Chenxi, ZHANG Wen, FENG Yantong, LIANG Ting, QIU Xiaoyun, CAO Hui, HU Zhaochu. Determination of 42 Trace Elements in Silicate Glass Reference Materials by High Spatial Resolution LA-ICP-MS[J]. Rock and Mineral Analysis, 2023, 42(5): 983-995. doi: 10.15898/j.ykcs.202308090134

高空间分辨率LA-ICP-MS测定硅酸盐玻璃标准物质中42种微量元素

  • 基金项目: 国家重点研发计划项目(2021YFC2903000)课题“战略性矿产微区原位分析技术及应用”
详细信息
    作者简介: 何焘,博士,助理研究员,从事地球化学研究。E-mail:taohe1992@sina.com
  • 中图分类号: O657.63;P599

Determination of 42 Trace Elements in Silicate Glass Reference Materials by High Spatial Resolution LA-ICP-MS

  • 近年来,随着人们对关键金属(稀有金属、稀土金属、稀散金属和稀贵金属)的成矿机制、分布规律和绿色利用等研究日益加深,建立原位测定地质样品中关键金属元素(如REEs、Cr、Co、Ga、Ag、Cd、In、W、Tl等)分析方法对于研究关键金属元素的地球化学行为、分布规律和成矿机制具有重要意义。由于关键金属在地壳中丰度极低(一般为ng/g~μg/g级别),赋存矿物非常细小(粒径μm级别),因此需要建立高空间分辨率微区原位分析技术实现低含量(ng/g~μg/g)微量元素的定量。本文提出了高频剥蚀模式与Ar-N2等离子体技术相结合提升LA-ICP-MS对微量元素的检出能力,使之能够满足地质样品中关键金属元素的检测需求。结果表明:在Ar-N2等离子体条件下,采用高频(20Hz)剥蚀模式,LA-ICP-MS分析中大部分元素灵敏度提升了1.5~9倍。在使用高灵敏度X型截取锥时,高频剥蚀模式与氮气增敏技术相结合可以显著减小氧化物产率和降低U-Th分馏,获得更宽的载气流速区间(0.9~1.08L/min)以满足测试的仪器分析条件(ThO+/Th+<0.5%和U/Th=1)。本研究开发的高空间分辨率LA-ICP-MS关键金属分析方法具有较低的检出限(在剥蚀束斑24μm条件下,30种元素的检出限<0.02μg/g),在高空间分辨率(10~24μm)条件下,通过对8种国际硅酸盐玻璃标准物质中42种微量元素进行定量分析,34种微量元素的测试结果的准确度优于10%,精密度优于15%,实现了在高空间分辨率条件下对微量元素的准确定量分析。

  • 加载中
  • 图 1  不同剥蚀频率(5Hz和20Hz)和等离子体条件(N2=0或 10mL/min)单点剥蚀NIST612产生的元素139La信号随氩气流速(a)和剥蚀时间(b)的变化情况

    Figure 1. 

    图 2  在不同剥蚀频率(5Hz和20Hz)和等离子体条件(N2=0或 10mL/min)下62种元素(Li~U)灵敏度的变化

    Figure 2. 

    图 3  不同剥蚀频率(5Hz和20Hz)和等离子体条件(N2=0或 10mL/min)下Th信号强度、氧化物产率(ThO+/Th+)和分馏效应(U/Th)随着载气气流的变化

    Figure 3. 

    图 4  高频剥蚀模式和不同束斑(10~24μm)条件下62种元素的检出限

    Figure 4. 

    图 5  在剥蚀束斑为10μm (a)、16μm (b)和24μm (c)条件下采用高频剥蚀(20Hz)模式结合Ar-N2等离子体分析获得硅酸盐玻璃标准物质MPI-DING和USGS中42种微量元素分析结果的相对偏差(n=15)

    Figure 5. 

    图 6  I-DING和USGS硅酸盐玻璃标准物质中42种微量元素分析结果的RSD与元素浓度关系

    Figure 6. 

    表 1  LA-ICP-MS仪器参数

    Table 1.  Instrumental operating conditions

    高分辨电感耦合等离子体质谱
    (Thermo Scientific Element XR)
    激光剥蚀系统
    (Geolas 2005准分子激光器)
    参数 工作条件 参数 工作条件
    RF 功率 1200W 波长 193nm
    冷却气(Ar)流速 16.00L/min 脉冲宽度 15ns
    辅助气(Ar)流速 0.8L/min 能量密度 14J/cm2
    载气(Ar)流速 0.9~1.5L/min 剥蚀束斑(直径) 10μm、16μm、24μm
    采样锥和截取锥类型 标准采样锥+X型截取锥 剥蚀频率 5Hz、20Hz
    分辨率 MM=300 载气(He)流速 0.54L/min
    检测器模式 Triple
    同位素个数 79
    每个元素积分时间 0.010s
    总积分时间 1.2s
    下载: 导出CSV
  • [1]

    蒋少涌, 温汉捷, 许成, 等. 关键金属元素的多圈层循环与富集机理: 主要科学问题及未来研究方向[J]. 中国科学基金, 2019, 33(2): 111−118.

    Jiang S Y, Wen H J, Xu C, et al. Earth sphere cycling and enrichment mechanism of critical metals: Major scientific issues for future research[J]. Bulletin of National Natural Science Foundation of China, 2019, 33(2): 111−118.

    [2]

    翟明国, 王汝成, 吴福元, 等. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 2019, 33(2): 106−111.

    Zhai M G, Wang R C, Wu F Y, et al. Critical metal mineral resources: Current research status and scientific issues[J]. Bulletin of National Natural Science Foundation of China, 2019, 33(2): 106−111.

    [3]

    Cobelo-Garcia A, Filella M, Croot P, et al. COST action TD1407: Network on technology-critical elements (NOTICE)—From environmental processes to human health threats[J]. Environmental Science and Pollution Research, 2015, 22(19): 15188−15194. doi: 10.1007/s11356-015-5221-0

    [4]

    Watari T, Nansai K, Nakajima K. Review of critical metal dynamics to 2050 for 48 elements[J]. Resources, Conservation and Recycling, 2020, 155: 104669. doi: 10.1016/j.resconrec.2019.104669

    [5]

    李超, 王登红, 屈文俊, 等. 关键金属元素分析测试技术方法应用进展[J]. 岩矿测试, 2020, 39(5): 658−669. doi: 10.15898/j.cnki.11-2131/td.201907310115

    Li C, Wang D H, Qu W J, et al. A review and perspective on analytical methods of critical metal elements[J]. Rock and Mineral Analysis, 2020, 39(5): 658−669. doi: 10.15898/j.cnki.11-2131/td.201907310115

    [6]

    刘勇胜, 屈文俊, 漆亮, 等. 中国岩矿分析测试研究进展与展望(2011—2020)[J]. 矿物岩石地球化学通报, 2021, 40(3): 515−539.

    Liu Y S, Qu W J, Qi L, et al. Advances and perspectives of researches on rock and mineral analyses in China (2011—2020)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(3): 515−539.

    [7]

    Chu Z. Analytical methods for Os isotope ratios and Re-PGE mass fractions in geological samples[J]. Frontiers in Chemistry, 2020, 8: 615839.

    [8]

    Braukmüller N, Wombacher F, Bragagni A, et al. Determination of Cu, Zn, Ga, Ag, Cd, In, Sn and Tl in geological reference materials and chondrites by isotope dilution ICP‐MS[J]. Geostandards and Geoanalytical Research, 2020, 44(4): 733−752. doi: 10.1111/ggr.12352

    [9]

    Wang W, Ma L, Evans R D, et al. Quantification of Re and four other trace elements (Ag, Cd, Pd, Zn) in certified reference materials and natural waters[J]. Journal of Analytical Atomic Spectrometry, 2022, 37(7): 1471−1483. doi: 10.1039/D2JA00073C

    [10]

    Albrecht M, Derrey I T, Horn I, et al. Quantification of trace element contents in frozen fluid inclusions by UV-fs-LA-ICP-MS analysis[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(6): 1034−1041. doi: 10.1039/C4JA00015C

    [11]

    Michaliszyn L, Ren T, Röthke A, et al. A new method for the SI-traceable quantification of element contents in solid samples using LA-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(1): 126−135. doi: 10.1039/C9JA00296K

    [12]

    赵令浩, 詹秀春, 曾令森, 等. 磷灰石LA-ICP-MS U-Pb定年直接校准方法研究[J]. 岩矿测试, 2022, 41(5): 744−753.

    Zhao L H, Zhan X C, Zeng L S, et al. Direct calibration method for LA-HR-ICP-MS apatite U-Pb dating[J]. Rock and Mineral Analysis, 2022, 41(5): 744−753.

    [13]

    张雅, 李全忠, 闫峻, 等. LA-ICP-MS独居石U-Th-Pb测年方法研究[J]. 岩矿测试, 2021, 40(5): 637−649. doi: 10.15898/j.cnki.11-2131/td.202101130005

    Zhang Y, Li Q Z, Yan J, et al. Analytical conditions for U-Th-Pb dating of monazite by LA-ICP-MS[J]. Rock and Mineral Analysis, 2021, 40(5): 637−649. doi: 10.15898/j.cnki.11-2131/td.202101130005

    [14]

    谭细娟, 郭超, 凤永刚, 等. 激光剥蚀系统气体流速变化对LA-ICP-MS锆石U-Pb定年精度的影响[J]. 岩矿测试, 2022, 41(4): 554−563. doi: 10.15898/j.cnki.11-2131/td.202110020140

    Tan X J, Guo C, Feng Y G, et al. Effect of gas flow rates in laser ablation system on accuracy and precision of zircon U-Pb dating analysis by LA-ICP-MS[J]. Rock and Mineral Analysis, 2022, 41(4): 554−563. doi: 10.15898/j.cnki.11-2131/td.202110020140

    [15]

    Caulfield J T, Tomlinson E L, Chew D M, et al. Microanalysis of Cl, Br and I in apatite, scapolite and silicate glass by LA-ICP-MS[J]. Chemical Geology, 2020, 557: 119854. doi: 10.1016/j.chemgeo.2020.119854

    [16]

    Jenner F E, Arevalo R D. Major and trace element analysis of natural and experimental igneous systems using LA-ICP-MS[J]. Elements, 2016, 12(5): 311−316. doi: 10.2113/gselements.12.5.311

    [17]

    Jochum K P, Stoll B, Weis U, et al. Non-matrix-matched calibration for the multi-element analysis of geological and environmental samples using 200nm femtosecond LA-ICP-MS: A comparison with nanosecond lasers[J]. Geostandards and Geoanalytical Research, 2014, 38(3): 265−292. doi: 10.1111/j.1751-908X.2014.12028.x

    [18]

    Bao Z A, Yuan H L, Zong C L, et al. Simultaneous determination of trace elements and lead isotopes in fused silicate rock powders using a boron nitride vessel and fsLA-(MC)-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(4): 1012−1022. doi: 10.1039/C5JA00410A

    [19]

    Zhang L, Han B F, Gu L B, et al. A comparison of zircon Hf isotope analyses by MC-ICP-MS and LA-MC-ICP-MS[J]. Acta Petrologica Sinica, 2006, 22(2): 510−512.

    [20]

    Zhang W, Hu Z C, Günther D, et al. Direct lead isotope analysis in Hg-rich sulfides by LA-MC-ICP-MS with a gas exchange device and matrix-matched calibration[J]. Analytica Chimica Acta, 2016, 948: 9−18. doi: 10.1016/j.aca.2016.10.040

    [21]

    Martin C, Ponzevera E, Harlow G. In situ lithium and boron isotope determinations in mica, pyroxene, and serpentine by LA-MC-ICP-MS[J]. Chemical Geology, 2015, 412: 107−116. doi: 10.1016/j.chemgeo.2015.07.022

    [22]

    Tong X R, Liu Y S, Hu Z C, et al. Accurate determination of Sr isotopic compositions in clinopyroxene and silicate glasses by LA-MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2016, 40(1): 85−99. doi: 10.1111/j.1751-908X.2015.00315.x

    [23]

    Gray A L. Solid sample introduction by laser ablation for inductively coupled plasma source-mass spectrometry[J]. Analyst, 1985, 110(5): 551−556. doi: 10.1039/an9851000551

    [24]

    Scheffler G L, Pozebon D. Advantages, drawbacks and applications of mixed Ar-N2 sources in inductively coupled plasma-based techniques: An overview[J]. Analytical Methods, 2014, 6(16): 6170−6182. doi: 10.1039/C4AY00178H

    [25]

    Hu Z C, Gao S, Liu Y S, et al. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(8): 1093−1101. doi: 10.1039/b804760j

    [26]

    Guillong M, Heinrich C A. Sensitivity enhancement in laser ablation ICP-MS using small amounts of hydrogen in the carrier gas[J]. Journal of Analytical Atomic Spectrometry, 2007, 22(12): 1488−1494. doi: 10.1039/b709489b

    [27]

    Newman K. Effects of the sampling interface in MC-ICP-MS: Relative elemental sensitivities and non-linear mass dependent fractionation of Nd isotopes[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(1): 63−70. doi: 10.1039/C1JA10222B

    [28]

    He T, Ni Q, Miao Q, et al. Effects of cone combinations on the signal enhancement by nitrogen in LA-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(6): 1021−1030. doi: 10.1039/C7JA00376E

    [29]

    Hu Z C, Liu Y S, Li M, et al. Results for rarely determined elements in MPI-DING, USGS and NIST SRM glasses using laser ablation ICP-MS[J]. Geostandards and Geoanalytical Research, 2009, 33(3): 319−335. doi: 10.1111/j.1751-908X.2009.00030.x

    [30]

    Petrelli M, Laeger K, Perugini D. High spatial resolution trace element determination of geological samples by laser ablation quadrupole plasma mass spectrometry: Implications for glass analysis in volcanic products[J]. Geosciences Journal, 2016, 20: 851−863. doi: 10.1007/s12303-016-0007-z

    [31]

    冯彦同, 张文, 胡兆初, 等. 激光剥蚀电感耦合等离子体质谱仪新分析模式及其在地球科学中的应用[J]. 中国科学:地球科学, 2022, 52(1): 98−121.

    Feng Y T, Zhang W, Hu Z C, et al. A new analytical mode and application of the laser ablation inductively coupled plasma mass spectrometer in the Earth sciences[J]. Science China: Earth Science, 2022, 52(1): 98−121.

    [32]

    Kimura J I, Chang Q. Origin of the suppressed matrix effect for improved analytical performance in determination of major and trace elements in anhydrous silicate samples using 200nm femtosecond laser ablation sector-field inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(9): 1549−1559. doi: 10.1039/c2ja10344c

    [33]

    Zou Z Q, Wang Z C, Cheng H, et al. Comparative determination of mass fractions of elements with variable chalcophile affinities in geological reference materials with and without HF-desilicification[J]. Geostandards and Geoanalytical Research, 2020, 44(3): 501−521. doi: 10.1111/ggr.12328

    [34]

    Gaschnig R M, Rudnick R L, McDonough W F. Determination of Ga, Ge, Mo, Ag, Cd, In, Sn, Sb, W, Tl and Bi in USGS whole-rock reference materials by standard addition ICP-MS[J]. Geostandards and Geoanalytical Research, 2015, 39(3): 371−379. doi: 10.1111/j.1751-908X.2014.00330.x

    [35]

    Belgrano T M, Milton J A, Teagle D A H. Determination of ultra-trace Au, Ag, As, Pt and Re mass fractions in volcanic glasses and rock powders by LA-ICP-MS[J]. Geostandards and Geoanalytical Research, 2022, 46(4): 621−644. doi: 10.1111/ggr.12452

    [36]

    Wang Z, Becker H, Wombacher F. Mass fractions of S, Cu, Se, Mo, Ag, Cd, In, Te, Ba, Sm, W, Tl and Bi in geological reference materials and selected carbonaceous chondrites determined by isotope dilution ICP-MS[J]. Geostandards and Geoanalytical Research, 2014, 39(2): 185−208.

  • 加载中

(6)

(1)

计量
  • 文章访问数:  1198
  • PDF下载数:  95
  • 施引文献:  0
出版历程
收稿日期:  2023-08-09
修回日期:  2023-09-06
录用日期:  2023-09-17
刊出日期:  2023-10-31

目录