中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

激光剥蚀电感耦合等离子体质谱法测定碳酸盐矿物中元素组成

罗涛, 卿丽媛, 刘金雨, 张文, 何焘, 胡兆初. 激光剥蚀电感耦合等离子体质谱法测定碳酸盐矿物中元素组成[J]. 岩矿测试, 2023, 42(5): 996-1006. doi: 10.15898/j.ykcs.202308020117
引用本文: 罗涛, 卿丽媛, 刘金雨, 张文, 何焘, 胡兆初. 激光剥蚀电感耦合等离子体质谱法测定碳酸盐矿物中元素组成[J]. 岩矿测试, 2023, 42(5): 996-1006. doi: 10.15898/j.ykcs.202308020117
LUO Tao, QING Liyuan, LIU Jinyu, ZHANG Wen, HE Tao, HU Zhaochu. Accurate Determination of Elemental Contents in Carbonate Minerals with Laser Ablation Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2023, 42(5): 996-1006. doi: 10.15898/j.ykcs.202308020117
Citation: LUO Tao, QING Liyuan, LIU Jinyu, ZHANG Wen, HE Tao, HU Zhaochu. Accurate Determination of Elemental Contents in Carbonate Minerals with Laser Ablation Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2023, 42(5): 996-1006. doi: 10.15898/j.ykcs.202308020117

激光剥蚀电感耦合等离子体质谱法测定碳酸盐矿物中元素组成

  • 基金项目: 国家重点研发计划项目(2021YFC2903003)课题“战略性矿产微区原位分析技术及应用”;国家自然科学基金项目(41903015);地质过程与矿产资源国家重点实验室专项
详细信息
    作者简介: 罗涛,博士,副研究员,主要从事激光剥蚀等离子体质谱机理、元素及同位素分析和副矿物U-Th-Pb年代学研究。E-mail:luotao11@cug.edu.cn
  • 中图分类号: P575;P578.6;O657.63

Accurate Determination of Elemental Contents in Carbonate Minerals with Laser Ablation Inductively Coupled Plasma-Mass Spectrometry

  • 碳酸盐中微量元素信息可为探究古环境、古气候演化、壳幔相互作用以及成岩成矿等重要地质作用过程提供关键约束,其微量元素含量的准确测定一直备受学者关注。激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)可提供碳酸盐矿物中微量元素含量的精细信息,而常规激光测试方法严重制约着碳酸盐矿物微量元素分析的空间分辨率和低含量元素的检测能力。相比于常规剥蚀池条件时的低频率分析,本研究通过采用气溶胶局部提取快速清洗剥蚀池结合高频率激光剥蚀的方式,快速提升激光微区分析瞬时信号强度,有效地提升峰形信号灵敏度(约13倍),碳酸盐激光微区元素检出限降低5~10倍。在此激光分析模式下,分别采用纳秒和飞秒激光剥蚀联用四极杆等离子体质谱仪(LA-Q-ICP-MS),以NIST610玻璃为外标,Ca为内标开展了较小激光剥蚀束斑(32μm)条件下碳酸盐矿物中微量元素(亲石元素、亲铁和亲硫元素)分析。结果表明,纳秒和飞秒激光分析碳酸盐矿物标样CGSP-A、CGSP-B、CGSP-C、CGSP-D和MACS-3获得的亲石元素(如Sc、Sr、Y、Ba、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Th等)测试值与推荐值在误差范围内一致;而亲铁和亲硫元素(如Ni、Cu、Zn、As、Cd、Sn、Sb和Pb)测试结果则存在较大偏差(大于20%),这可能与本研究选用的高频激光剥蚀和较小剥蚀束斑(32µm)造成显著的“Downhole”分馏效应有关。本研究通过研制新型激光剥蚀池,改变激光剥蚀方式,即采用气溶胶局部提取剥蚀池和高频率剥蚀方法可有效地提升碳酸盐矿物微量元素(如亲石元素)分析的空间分辨率和低含量元素检测能力,有利于促进碳酸盐矿物在地质环境等领域的广泛应用。

  • 加载中
  • 图 1  定量分析示意图

    Figure 1. 

    图 2  气溶胶局部提取和常规剥蚀池纳秒激光单脉冲剥蚀NIST610玻璃时U元素瞬时信号对比图

    Figure 2. 

    图 3  纳秒激光高频率剥蚀NIST610玻璃时气溶胶局部提取和常规剥蚀池U元素瞬时信号对比图

    Figure 3. 

    图 4  不同激光剥蚀条件下元素检出限

    Figure 4. 

    图 5  以NIST610玻璃为外标,Ca为内标分析碳酸盐标样CGSP-A、CGSP-B、CGSP-C、CGSP-D和MACS-3结果

    Figure 5. 

    表 1  LA-ICP-MS仪器操作参数

    Table 1.  Summary of instrumental operating parameters.

    激光剥蚀系统 Agilent 7900 电感耦合等离子体质谱仪
    工作参数 实验条件 实验条件 工作参数 实验条件
    激光类型 193nm,
    纳秒激光
    257nm,
    飞秒激光
    RF功率 1500W
    剥蚀频率 6Hz,20Hz 10Hz,100Hz 等离子体气流速 15.0L/min
    脉冲宽度 15ns 300fs 辅助气流速 1.0L/min
    能量密度 6J/cm2 2.5J/cm2 采样深度 5.0mm
    束斑大小
    剥蚀模式
    32µm
    单点剥蚀
    32µm
    单点剥蚀
    离子透镜设置 Typical
    剥蚀时间 5s 5s 测量的同位素 43Ca,45Sc,51V,53Cr,55Mn,57Fe,59Co,60Ni,63Cu,66Zn,75As,88Sr,89Y,93Nb,111Cd,118Sn,121Sb,137Ba, 139La,140Ce,141Pr,143Nd,147Sm,151Eu,157Gd,159Tb, 163Dy,165Ho,166Er,169Tm,173Yb,175Lu,178Hf,181Ta, 208Pb,232Th,238U
    驻留时间 4ms
    检测器模式 Dual
    下载: 导出CSV

    表 2  碳酸盐标样LA-ICP-MS分析结果(n=11)

    Table 2.  Element concentrations of carbonate reference materials obtained with LA-ICP-MS analysis (n=11).

    元素 CGSP-A CGSP-B CGSP-C CGSP-D MACS-3
    推荐值(µg/g) 纳秒激光测定值
    (µg/g)
    飞秒激光测定值
    (µg/g)
    推荐值(µg/g) 纳秒激光测定值
    (µg/g)
    飞秒激光测定值
    (µg/g)
    推荐值(µg/g) 纳秒激光测定值
    (µg/g)
    飞秒激光测定值
    (µg/g)
    推荐值(µg/g) 纳秒激光测定值
    (µg/g)
    飞秒激光测定值
    (µg/g)
    推荐值(µg/g) 纳秒激光测定值
    (µg/g)
    飞秒激光测定值
    (µg/g)
    Sc 18.1±0.7 14.8±2.3 16.2±0.6 4.39±0.49 3.86±0.21 4.09±0.21 5.09±0.52 3.83±0.25 4.13±0.12 15.7±0.8 14.8±0.5 15.4±0.3 21.0±0.8 19.9±1.1 19.5±1.4
    V 20.4±3.2 20.7±3.6 22.5±1.1 17.6±2.1 16.8±0.7 17.3±0.5 15.5±3.1 12.5±1.4 14.9±1.2 5.41±3.10 4.35±0.17 4.27±0.08 46.3±1.1 57.3±6.0 56.7±5.3
    Cr 25.5±0.9 25.0±5.4 27.6±1.4 25±1 4.65±1.07 6.00±1.75 18.8±2.2 4.87±2.39 5.39±1.33 3.39±0.53 4.09±3.74 2.51±0.23 117±5 142±16 140±15
    Mn 349±852 404±8721 390±1082 257±542 299±2639 287±837 267±232 294±515 306±945 189±232 213±1337 214±300 536±28 615±59 601±52
    Fe 118±3378 818±13633 933±2872 219±3026 158±6282 172±4773 222±3448 137±13175 172±15173 792±1126 659±2973 644±551 112±300 124±1231 123±1146
    Co 5.04±0.15 4.36±0.62 4.56±0.13 0.75±0.07 0.42±0.09 0.46±0.09 0.78±0.06 1.21±0.83 0.99±0.52 2.32±0.21 2.19±0.24 2.02±0.07 57.1±2.0 57.4±4.1 57.1±4.1
    Ni 4.35±1.74 5.16±0.96 5.52±0.28 5.6±1.2 1.37±0.77 2.06±1.38 6.34±1.33 1.39±0.55 2.41±2.89 6.25±1.34 8.36±1.84 7.25±0.69 57.4±4.9 69±4 68.3±4.2
    Cu 2.15±0.29 0.42±0.53 1.34±1.52 3.07±0.11 -1.186±3.266 0.62±0.16 2.26±0.19 0.76±1.20 1.15±0.22 1.37±0.28 0.79±2.93 0.30±0.09 120±5 141±15 137±14
    Zn 517±20 473±65 520±32 36.9±2.2 29.9±6.6 36.7±2.1 92.1±3.0 77.3±8.1 86.4±5.3 17.2±2.7 16.8±5.2 16.7±1.1 111±6 170±19 165±18
    As 3.68±0.41 10.0±2.0 10.4±1.3 5.44±0.49 8.33±0.65 7.42±0.46 3.42±0.34 6.42±0.79 6.42±0.55 3.39±0.35 3.34±0.63 3.39±0.34 44.2±1.4 61.1±7.1 59.8±7.1
    Sr 255±74 251±148 247±110 261±111 289±88 285±76 293±89 302±83 313±85 246±72 263±141 265±38 676±350 711±192 697±368
    Y 108±18 99.1±11.4 103±5 97.1±1.9 91.8±2.5 93.8±2.4 158±7 137±4 145±4 28.3±0.6 26.3±0.8 26.8±0.4 20.6±0.0 20.2±0.7 19.8±1.0
    Nb 3.55±0.24 2.49±0.46 2.69±0.11 4.11±0.49 2.94±0.18 2.95±0.07 3.16±0.35 1.96±0.28 2.47±0.23 0.44±0.07 0.29±0.03 0.28±0.01 35.2±3.1 56.9±5.2 56.6±4.9
    Cd 4.81±0.49 2.66±0.47 3.45±0.51 0.22±0.02 0.1±0.2 0.38±0.32 0.63±0.08 0.26±0.21 0.52±0.08 1.05±0.15 0.49±0.20 0.78±0.10 54.6±2.2 62.4±10.0 60.1±9.2
    Sn 10.1±0.9 12.2±2.7 11.5±0.7 2.7±0.1 3.47±0.32 3.65±0.16 2.26±0.12 2.78±0.47 3.20±0.39 0.39±0.12 1.44±0.42 1.24±0.14 58.1±8.8 56.3±4.8 55.0±4.4
    Sb 0.43±0.12 0.28±0.09 0.27±0.03 1.84±0.22 1.98±0.34 1.87±0.11 0.21±0.04 0.21±0.05 0.22±0.06 0.09±0.05 0.057±0.024 0.051±0.012 20.6±1.1 28.2±3.0 27.6±2.8
    Ba 68.6±1.9 64.8±10.7 62.5±4.4 31.6±1.4 29.4±1.3 29.0±0.9 18.1±0.7 16±1 17.8±0.9 283±17 291±14 290±4 58.7±2.0 63.3±3.0 62.1±3.0
    La 109±36 916±110 966±55 124±4 118±3 117±3 225±6 203±7 217±6 62.3±1.7 57±2 61.0±0.7 10.4±0.5 11.9±0.6 11.6±0.7
    Ce 260±29 231±282 242±142 437±14 414±11 411±12 750±24 679±17 719±19 132±2 130±12 132±1 11.2±0.3 12±0 11.8±0.7
    Pr 388±10 295±34 304±16 81.3±2.6 69.4±2.0 67.4±1.6 137±7 114±3 118±3 17.3±0.4 15.3±1.0 15.0±0.1 12.1±0.2 11.9±0.8 11.5±0.8
    Nd 153±48 121±144 125±61 407±12 351±10 349±8 675±23 562±17 596±16 63.9±2.8 57.7±2.2 59.3±0.8 11.0±0.4 11.4±0.5 11.0±0.7
    Sm 154±5 127±15 131±6 79.9±2.6 71.4±3.1 71.0±1.5 136±4 117±4 122±3 9.17±0.24 8.25±1.18 8.39±0.17 11.0±0.3 11±1 10.8±0.9
    Eu 32.3±1.1 27.6±3.1 28.5±1.5 24.0±0.5 23.3±1.0 22.9±0.4 40.9±1.5 37.4±0.8 38.8±0.9 2.73±0.10 2.55±0.11 2.60±0.06 11.8±0.1 11.9±0.7 11.8±0.6
    Gd 77.0±15.9 59.2±7.2 56.8±2.9 58.3±2.8 56.1±1.9 56.4±1.3 97.0±1.3 91.1±2.5 94.2±2.0 6.94±0.70 5.94±0.41 5.95±0.08 10.8±0.3 9.96±0.52 9.83±0.54
    Tb 8.37±0.78 5.88±0.65 5.89±0.34 7.72±0.33 6.99±0.22 6.98±0.24 12.8±0.7 10.8±0.2 11.2±0.3 1.09±0.06 0.87±0.06 0.91±0.02 10.4±0.0 9.96±0.46 9.76±0.57
    Dy 30.9±1.1 25.5±2.9 26.5±1.3 31.2±1.0 28.7±1.1 28.8±0.7 50.4±2.2 44.1±1.7 46.7±1.2 5.61±0.17 5.14±0.23 5.46±0.14 10.7±0.5 10.2±0.5 9.91±0.67
    Ho 4.70±0.11 3.96±0.50 4.07±0.27 4.28±0.14 4.10±0.17 3.98±0.09 6.52±0.09 5.90±0.19 6.18±0.14 1.31±0.10 1.04±0.06 1.08±0.03 11.3±0.1 10.6±0.5 10.2±0.7
    Er 10.0±1.6 7.41±0.96 7.58±0.39 7.24±0.25 6.69±0.27 6.76±0.58 11.7±0.7 9.80±0.40 10.3±0.3 2.78±0.04 2.44±0.20 2.58±0.05 11.2±0.2 10±1 9.90±0.56
    Tm 0.89±0.02 0.72±0.10 0.71±0.04 0.70±0.03 0.64±0.03 0.74±0.36 0.98±0.03 0.83±0.04 0.88±0.03 0.41±0.05 0.31±0.05 0.32±0.01 11.1±0.1 10.7±0.6 10.4±0.7
    Yb 4.22±0.10 3.20±0.43 3.37±0.24 3.07±0.16 2.39±0.21 2.44±0.09 4.47±0.25 3.54±0.33 3.55±0.13 1.67±0.05 1.46±0.17 1.56±0.07 11.6±0.1 10.7±0.5 10.5±0.6
    Lu 0.51±0.06 0.34±0.03 0.34±0.02 0.40±0.04 0.29±0.02 0.28±0.02 0.49±0.01 0.33±0.02 0.35±0.03 0.24±0.03 0.18±0.02 0.18±0.01 11.1±0.1 10±0 9.88±0.54
    Hf 0.21±0.02 0.032±0.028 0.027±0.009 0.19±0.02 0.024±0.017 0.031±0.040 0.23±0.05 0.0093±0.0038 0.012±0.004 0.1±0.0 0.0024±0.0048 0.0026±0.0021 4.73±0.21 5.51±0.56 5.44±0.46
    Ta 0.33±0.03 0.28±0.05 0.28±0.02 0.75±0.02 0.57±0.04 0.60±0.02 0.4±0.0 0.25±0.08 0.30±0.03 0.18±0.02 0.10±0.02 0.11±0.01 20.5±5.3 25±3 24.7±2.4
    Pb 163±31 218±345 193±90 312±6 435±21 373±10 224±5 267±26 277±26 119±5 157±3 146±3 56.5±1.8 74.6±6.4 73.3±7.2
    Th 167±7 132±18 144±9 7.76±0.44 6.94±0.24 7.26±0.19 9.97±0.42 9.21±0.24 9.68±0.24 1.96±0.16 1.63±0.10 1.73±0.03 55.4±1.1 53.6±2.6 52.9±3.1
    U 0.07±0.01 0.063±0.019 0.063±0.005 0.03±0.01 0.0043±0.0039 0.0046±0.0011 0.02±0.01 0.0037±0.0026 0.0049±0.0024 0.02±0.01 0.039±0.107 0.0038±0.0017 1.52±0.04 1.67±0.39 1.79±0.42
    下载: 导出CSV
  • [1]

    Hori M, Ishikawa T, Nagaishi K, et al. Rare earth elements in a stalagmite from Southwestern Japan: A potential proxy for chemical weathering[J]. Geochemical Journal, 2014, 48(1): 73−84. doi: 10.2343/geochemj.2.0287

    [2]

    Chen W, Simonetti A. In-situ determination of major and trace elements in calcite and apatite, and U-Pb ages of apatite from the Oka carbonatite complex: Insights into a complex crystallization history[J]. Chemical Geology, 2013, 353: 151−172. doi: 10.1016/j.chemgeo.2012.04.022

    [3]

    Chen C F, Liu Y S, Foley S F, et al. Carbonated sediment recycling and its contribution to lithospheric refertilization under the Northern North China Craton[J]. Chemical Geology, 2017, 466: 641−653. doi: 10.1016/j.chemgeo.2017.07.016

    [4]

    Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta, 2000, 64(9): 1557−1565. doi: 10.1016/S0016-7037(99)00400-7

    [5]

    Chen L, Liu Y S, Hu Z C, et al. Accurate determinations of fifty-four major and trace elements in carbonate by LA-ICP-MS using normalization strategy of bulk components as 100%[J]. Chemical Geology, 2011, 284(3-4): 283−295.

    [6]

    Sun D Y, Liu J, Fan C Z, et al. New CGSP carbonate matrix reference materials for LA-ICP-MS analysis[J]. Geostandards and Geoanalytical Research, 2023, 47(1): 7−22. doi: 10.1111/ggr.12460

    [7]

    Desmarchelier J M, Hellstrom J C, McCulloch M T. Rapid trace element analysis of speleothems by ELA-ICP-MS[J]. Chemical Geology, 2006, 231(1-2): 102−117. doi: 10.1016/j.chemgeo.2006.01.002

    [8]

    Fairchild I J, Treble P C. Trace elements in speleothems as recorders of environmental change[J]. Quaternary Science Reviews, 2009, 28(5-6): 449−468. doi: 10.1016/j.quascirev.2008.11.007

    [9]

    Treble P, Shelley J, Chappell J. Comparison of high resolution sub-annual records of trace elements in a modern (1911—1992) speleothem with instrumental climate data from Southwest Australia[J]. Earth and Planetary Science Letters, 2003, 216(1-2): 141−153. doi: 10.1016/S0012-821X(03)00504-1

    [10]

    Smrzka D, Zwicker J, Bach W, et al. The behavior of trace elements in seawater, sedimentary pore water, and their incorporation into carbonate minerals: A review[J]. Facies, 2019, 65: 1−47. doi: 10.1007/s10347-018-0543-2

    [11]

    Kawabe I, Kitahara Y, Naito K. Non-chondritic yttrium/holmium ratio and lanthanide tetrad effect observed in pre-Cenozoic limestones[J]. Geochemical Journal, 1991, 25(1): 31-44.

    [12]

    陈琳莹, 李崇瑛, 陈多福. 碳酸盐岩中碳酸盐矿物稀土元素分析方法进展[J]. 矿物岩石地球化学通报, 2012, 31(2): 177−183. doi: 10.3969/j.issn.1007-2802.2012.02.012

    Chen L Y, Li C Y, Chen D F. Progress of analytical methods of rare earth elements of carbonate minerals in carbonate rocks[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(2): 177−183. doi: 10.3969/j.issn.1007-2802.2012.02.012

    [13]

    Akagi T, Hashimoto Y, Fu F, et al. Variation of the distribution coefficients of rare earth elements in modern coral-lattices: Species and site dependencies[J]. Geochimica et Cosmochimica Acta, 2004, 68(10): 2265−2273. doi: 10.1016/j.gca.2003.12.014

    [14]

    Tan L, Shen C C, Cai Y, et al. Trace-element variations in an annually layered stalagmite as recorders of climatic changes and anthropogenic pollution in Central China[J]. Quaternary Research, 2014, 81(2): 181−188. doi: 10.1016/j.yqres.2013.12.001

    [15]

    Arkhipkin A I, Schuchert P C, Danyushevsky L. Otolith chemistry reveals fine population structure and close affinity to the Pacific and Atlantic oceanic spawning grounds in the migratory southern blue whiting (Micromesistius Australis)[J]. Fisheries Research, 2009, 96(2-3): 188−194. doi: 10.1016/j.fishres.2008.11.002

    [16]

    Jenner F E, Arevalo R D. Major and trace element analysis of natural and experimental igneous systems using LA-ICP-MS[J]. Elements, 2016, 12(5): 311−316. doi: 10.2113/gselements.12.5.311

    [17]

    刘勇胜, 胡兆初, 李明, 等. LA-ICP-MS 在地质样品元素分析中的应用[J]. 科学通报, 2013, 58(36): 3753−3769. doi: 10.1360/csb2013-58-36-3753

    Liu Y S, Hu Z C, Li M, et al. Applications of LA-ICP-MS in the elemental analyses of geological samples[J]. Chinese Science Bulletin, 2013, 58(36): 3753−3769. doi: 10.1360/csb2013-58-36-3753

    [18]

    罗涛, 胡兆初. 激光剥蚀电感耦合等离子体质谱副矿物 U-Th-Pb 定年新进展[J]. 地球科学, 2022, 47(11): 4122−4144.

    Luo T, Hu Z C. Recent advances in U-Th-Pb dating of accessory minerals by laser ablation inductively coupled plasma mass spectrometry Earth Science[J]. Earth Science, 2022, 47(11): 4122−4144.

    [19]

    Liao X H, Hu Z C, Luo T, et al. Determination of major and trace elements in geological samples by laser ablation solution sampling-inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(6): 1126−1134. doi: 10.1039/C9JA00027E

    [20]

    Luo T, Wang Y, Li M, et al. Determination of major and trace elements in alloy steels by nanosecond and femtosecond laser ablation ICP-MS with non-matrix-matched calibration[J]. Atomic Spectroscopy, 2020, 41(1): 11−19. doi: 10.46770/AS.2020.01.002

    [21]

    Mertz-Kraus R, Brachert T, Jochum K, et al. LA-ICP-MS analyses on coral growth increments reveal heavy winter rain in the Eastern Mediterranean at 9Ma[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 273(1-2): 25−40. doi: 10.1016/j.palaeo.2008.11.015

    [22]

    Thompson J A, Thompson J M, Goemann K, et al. Use of non-matrix matched reference materials for the accurate analysis of calcium carbonate by LA-ICP-MS[J]. Geostandards and Geoanalytical Research, 2022, 46(1): 97−115. doi: 10.1111/ggr.12405

    [23]

    Jochum K P, Scholz D, Stoll B, et al. Accurate trace element analysis of speleothems and biogenic calcium carbonates by LA-ICP-MS[J]. Chemical Geology, 2012, 318: 31−44.

    [24]

    Strnad L, Ettler V, Mihaljevic M, et al. Determination of trace elements in calcite using solution and laser ablation ICP‐MS: Calibration to NIST SRM glass and USGS MACS carbonate, and application to real landfill calcite[J]. Geostandards and Geoanalytical Research, 2009, 33(3): 347−355. doi: 10.1111/j.1751-908X.2009.00010.x

    [25]

    Bourdin C, Douville E, Genty D. Alkaline-earth metal and rare-earth element incorporation control by ionic radius and growth rate on a stalagmite from the Chauvet Cave, Southeastern France[J]. Chemical Geology, 2011, 290(1-2): 1−11. doi: 10.1016/j.chemgeo.2011.08.006

    [26]

    Wu C C, Burger M, Günther D, et al. Highly-sensitive open-cell LA-ICPMS approaches for the quantification of rare earth elements in natural carbonates at parts-per-billion levels[J]. Analytica Chimica Acta, 2018, 1018: 54−61. doi: 10.1016/j.aca.2018.02.021

    [27]

    Russo R E, Mao X, Gonzalez J J, et al. Femtosecond laser ablation ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2002, 17(9): 1072−1075. doi: 10.1039/B202044K

    [28]

    Fernández B, Claverie F, Pécheyran C, et al. Direct analysis of solid samples by fs-LA-ICP-MS[J]. TrAC Trends in Analytical Chemistry, 2007, 26(10): 951−966. doi: 10.1016/j.trac.2007.08.008

    [29]

    Bian Q, Garcia C C, Koch J, et al. Non-matrix matched calibration of major and minor concentrations of Zn and Cu in brass, aluminium and silicate glass using NIR femtosecond laser ablation inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2006, 21(2): 187−191. doi: 10.1039/B513690C

    [30]

    Horn I, von Blanckenburg F. Investigation on elemental and isotopic fractionation during 196nm femtosecond laser ablation multiple collector inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2007, 62(4): 410−422. doi: 10.1016/j.sab.2007.03.034

    [31]

    Neff C, Becker P, Günther D. Parallel flow ablation cell for short signal duration in LA-ICP-TOFMS element imaging[J]. Journal of Analytical Atomic Spectrometry, 2022, 37(3): 677−683. doi: 10.1039/D1JA00421B

    [32]

    ,Becker P, Günther D. Reducing sample amount for forensic glass analysis using LA-ICP-TOFMS and multivariate statistics[J]. Journal of Analytical Atomic Spectrometry, 2023, 38: 1704-1712.

    [33]

    Hu Z C, Liu Y S, Gao S, et al. A local aerosol extraction strategy for the determination of the aerosol composition in laser ablation inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(9): 1192−1203. doi: 10.1039/b803934h

    [34]

    Luo T, Wang Y, Hu Z C, et al. Further investigation into ICP-induced elemental fractionation in LA-ICP-MS using a local aerosol extraction strategy[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(4): 941−949. doi: 10.1039/C4JA00483C

    [35]

    冯彦同, 张文, 胡兆初, 等. 激光剥蚀电感耦合等离子体质谱仪新分析模式及其在地球科学中的应用[J]. 中国科学: 地球科学, 2022, 52(1): 98-121.

    Feng Y T, Zhang W, Hu Z C, et al. A new analytical mode and application of the laser ablation inductively coupled plasma mass spectrometer in the Earth sciences[J]. Science China Earth Sciences, 2022, 65(1): 182−196.

    [36]

    Luo T, Hu Z C, Zhang W, et al. Reassessment of the influence of carrier gases He and Ar on signal intensities in 193nm excimer LA-ICP-MS analysis[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(10): 1655−1663. doi: 10.1039/C8JA00163D

    [37]

    Jochum K P, Weis U, Stoll B, et al. Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines[J]. Geostandards and Geoanalytical Research, 2011, 35(4): 397−429. doi: 10.1111/j.1751-908X.2011.00120.x

    [38]

    Fietzke J, Liebetrau V, Günther D, et al. An alternative data acquisition and evaluation strategy for improved isotope ratio precision using LA-MC-ICP-MS applied to stable and radiogenic strontium isotopes in carbonates[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(7): 955−961. doi: 10.1039/b717706b

    [39]

    Pettke T, Oberli F, Audétat A, et al. Quantification of transient signals in multiple collector inductively coupled plasma mass spectrometry: Accurate lead isotope ratio determination by laser ablation of individual fluid inclusions[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(3): 475−492. doi: 10.1039/C0JA00140F

    [40]

    Kappel S, Boulyga S, Dorta L, et al. Evaluation strategies for isotope ratio measurements of single particles by LA-MC-ICPMS[J]. Analytical and Bioanalytical Chemistry, 2013, 405: 2943−2955. doi: 10.1007/s00216-012-6674-3

    [41]

    罗涛. LA-ICP-MS 分析过程中 ICP 引起的元素分馏效应研究[D]. 武汉: 中国地质大学(武汉), 2015.

    Luo T. Further investigation into ICP-induced elemental fractionation in LA-ICP-MS using a local aerosol extraction strategy[D]. Wuhan: China University of Geosciences (Wuhan), 2015.

    [42]

    Hu Z C, Gao S, Liu Y S, et al. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(8): 1093−1101. doi: 10.1039/b804760j

    [43]

    Hu Z C, Liu Y S, Gao S, et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(9): 1391−1399. doi: 10.1039/c2ja30078h

    [44]

    Wu S T, Yang M, Yang Y H, et al. Improved in situ zircon U-Pb dating at high spatial resolution (5-16μm) by laser ablation-single collector-sector field-ICP-MS using Jet sample and X skimmer cones[J]. International Journal of Mass Spectrometry, 2020, 456: 116394. doi: 10.1016/j.ijms.2020.116394

    [45]

    Yuan H L, Bao Z A, Chen K Y, et al. Improving the sensitivity of a multi-collector inductively coupled plasma mass spectrometer via expansion-chamber pressure reduction[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(5): 1011−1017. doi: 10.1039/C8JA00448J

    [46]

    Longerich H P, Jackson S E, Günther D. Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation[J]. Journal of Analytical Atomic Spectrometry, 1996, 11(9): 899−904. doi: 10.1039/JA9961100899

  • 加载中

(5)

(2)

计量
  • 文章访问数:  1049
  • PDF下载数:  91
  • 施引文献:  0
出版历程
收稿日期:  2023-08-02
修回日期:  2023-09-03
录用日期:  2023-09-15
刊出日期:  2023-10-31

目录