Accurate Determination of Elemental Contents in Carbonate Minerals with Laser Ablation Inductively Coupled Plasma-Mass Spectrometry
-
摘要:
碳酸盐中微量元素信息可为探究古环境、古气候演化、壳幔相互作用以及成岩成矿等重要地质作用过程提供关键约束,其微量元素含量的准确测定一直备受学者关注。激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)可提供碳酸盐矿物中微量元素含量的精细信息,而常规激光测试方法严重制约着碳酸盐矿物微量元素分析的空间分辨率和低含量元素的检测能力。相比于常规剥蚀池条件时的低频率分析,本研究通过采用气溶胶局部提取快速清洗剥蚀池结合高频率激光剥蚀的方式,快速提升激光微区分析瞬时信号强度,有效地提升峰形信号灵敏度(约13倍),碳酸盐激光微区元素检出限降低5~10倍。在此激光分析模式下,分别采用纳秒和飞秒激光剥蚀联用四极杆等离子体质谱仪(LA-Q-ICP-MS),以NIST610玻璃为外标,Ca为内标开展了较小激光剥蚀束斑(32μm)条件下碳酸盐矿物中微量元素(亲石元素、亲铁和亲硫元素)分析。结果表明,纳秒和飞秒激光分析碳酸盐矿物标样CGSP-A、CGSP-B、CGSP-C、CGSP-D和MACS-3获得的亲石元素(如Sc、Sr、Y、Ba、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Th等)测试值与推荐值在误差范围内一致;而亲铁和亲硫元素(如Ni、Cu、Zn、As、Cd、Sn、Sb和Pb)测试结果则存在较大偏差(大于20%),这可能与本研究选用的高频激光剥蚀和较小剥蚀束斑(32µm)造成显著的“Downhole”分馏效应有关。本研究通过研制新型激光剥蚀池,改变激光剥蚀方式,即采用气溶胶局部提取剥蚀池和高频率剥蚀方法可有效地提升碳酸盐矿物微量元素(如亲石元素)分析的空间分辨率和低含量元素检测能力,有利于促进碳酸盐矿物在地质环境等领域的广泛应用。
-
关键词:
- 激光剥蚀电感耦合等离子体质谱法 /
- 碳酸盐矿物 /
- 微量元素 /
- 气溶胶局部提取 /
- 高频率激光剥蚀
Abstract:BACKGROUND Trace element information in carbonates provides key constraints for investigating ancient environments, paleoclimate evolution, shell-mantle interactions, diagenesis and mineralization processes. The accurate determination of trace element content in carbonate minerals have always been a primary focus. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) can provide detailed information on trace element content in carbonate minerals. However, the elemental concentrations in carbonate minerals are usually extremely low (from hundreds of pg/g to tens of ng/g). A large spot size (from 44 to 100μm) is often used for trace element measurements in carbonate minerals. Therefore, the detection capability of low-content elements in carbonate minerals and the spatial resolution of LA determination still need to be improved.
OBJECTIVES To develop a new analytical method for determination of low-content trace elements in carbonate minerals with LA-ICP-MS.
METHODS A new local aerosol extraction ablation cell was proposed in this study. Laser ablation was performed using high-repetition rates with the new designed ablation cell. The elemental contents in carbonate reference materials MACS-3, CGSP-A, CGSP-B, CGSP-C, and CGSP-D were determined with both ns and fs LA-Q-ICP-MS with a spot size of 32μm. Here, NIST 610 glass was used as an external calibration material and Ca was used as an internal standard.
RESULTS The obtained peak height of a single laser shot was enhanced by a factor of 13 with the local aerosol extraction ablation cell because of the rapid washout time. The signal intensities were increased by 1.5 times under high-repetition rate laser ablation mode. Therefore, the detection limits of trace elements in carbonate minerals obtained from nanosecond laser ablation at high repetition rates (20Hz) were reduced by 5-8 times compared to conventional analysis (6Hz). The detection limits of trace elements were reduced by 5-10 times with the frequency of femtosecond laser ablation increased from 10Hz to 100Hz. The elemental contents in carbonate reference materials were measured with both ns and fs LA-Q-ICP-MS with a spot size of 32μm. The obtained results of lithophile elements (e.g., Sc, Sr, Y, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Th) in carbonate CGSP series and carbonate MACS-3 showed good agreement with their reference values. However, the measured results of siderophile and chalcophile elements (e.g., Ni, Cu, Zn, As, Cd, Sn, Sb, and Pb) showed systematic bias (>20%), which may be related to the “downhole” fractionation effect caused by the high-repetition rate laser ablation used in this study.
CONCLUSIONS The new designed local aerosol extraction ablation cell combined with high-repetition rate laser ablation mode significantly improved the spital resolution and determination ability of low-content elements in carbonate minerals. The obtained results of lithophile elements in carbonate CGSP series and carbonate MACS-3 showed good agreement with their reference values using ns- and fs-LA-Q-ICP-MS with a spot size of 32m. It is worth noting that the spatial resolution and the detection capability of ultra-low-content elements in carbonate minerals could be further improved with the proposed LA method combined with high-sensitivity magnetic sector mass spectrometry.
-
-
表 1 LA-ICP-MS仪器操作参数
Table 1. Summary of instrumental operating parameters.
激光剥蚀系统 Agilent 7900 电感耦合等离子体质谱仪 工作参数 实验条件 实验条件 工作参数 实验条件 激光类型 193nm,
纳秒激光257nm,
飞秒激光RF功率 1500W 剥蚀频率 6Hz,20Hz 10Hz,100Hz 等离子体气流速 15.0L/min 脉冲宽度 15ns 300fs 辅助气流速 1.0L/min 能量密度 6J/cm2 2.5J/cm2 采样深度 5.0mm 束斑大小
剥蚀模式32µm
单点剥蚀32µm
单点剥蚀离子透镜设置 Typical 剥蚀时间 5s 5s 测量的同位素 43Ca,45Sc,51V,53Cr,55Mn,57Fe,59Co,60Ni,63Cu,66Zn,75As,88Sr,89Y,93Nb,111Cd,118Sn,121Sb,137Ba, 139La,140Ce,141Pr,143Nd,147Sm,151Eu,157Gd,159Tb, 163Dy,165Ho,166Er,169Tm,173Yb,175Lu,178Hf,181Ta, 208Pb,232Th,238U 驻留时间 4ms 检测器模式 Dual 表 2 碳酸盐标样LA-ICP-MS分析结果(n=11)
Table 2. Element concentrations of carbonate reference materials obtained with LA-ICP-MS analysis (n=11).
元素 CGSP-A CGSP-B CGSP-C CGSP-D MACS-3 推荐值(µg/g) 纳秒激光测定值
(µg/g)飞秒激光测定值
(µg/g)推荐值(µg/g) 纳秒激光测定值
(µg/g)飞秒激光测定值
(µg/g)推荐值(µg/g) 纳秒激光测定值
(µg/g)飞秒激光测定值
(µg/g)推荐值(µg/g) 纳秒激光测定值
(µg/g)飞秒激光测定值
(µg/g)推荐值(µg/g) 纳秒激光测定值
(µg/g)飞秒激光测定值
(µg/g)Sc 18.1±0.7 14.8±2.3 16.2±0.6 4.39±0.49 3.86±0.21 4.09±0.21 5.09±0.52 3.83±0.25 4.13±0.12 15.7±0.8 14.8±0.5 15.4±0.3 21.0±0.8 19.9±1.1 19.5±1.4 V 20.4±3.2 20.7±3.6 22.5±1.1 17.6±2.1 16.8±0.7 17.3±0.5 15.5±3.1 12.5±1.4 14.9±1.2 5.41±3.10 4.35±0.17 4.27±0.08 46.3±1.1 57.3±6.0 56.7±5.3 Cr 25.5±0.9 25.0±5.4 27.6±1.4 25±1 4.65±1.07 6.00±1.75 18.8±2.2 4.87±2.39 5.39±1.33 3.39±0.53 4.09±3.74 2.51±0.23 117±5 142±16 140±15 Mn 349±852 404±8721 390±1082 257±542 299±2639 287±837 267±232 294±515 306±945 189±232 213±1337 214±300 536±28 615±59 601±52 Fe 118±3378 818±13633 933±2872 219±3026 158±6282 172±4773 222±3448 137±13175 172±15173 792±1126 659±2973 644±551 112±300 124±1231 123±1146 Co 5.04±0.15 4.36±0.62 4.56±0.13 0.75±0.07 0.42±0.09 0.46±0.09 0.78±0.06 1.21±0.83 0.99±0.52 2.32±0.21 2.19±0.24 2.02±0.07 57.1±2.0 57.4±4.1 57.1±4.1 Ni 4.35±1.74 5.16±0.96 5.52±0.28 5.6±1.2 1.37±0.77 2.06±1.38 6.34±1.33 1.39±0.55 2.41±2.89 6.25±1.34 8.36±1.84 7.25±0.69 57.4±4.9 69±4 68.3±4.2 Cu 2.15±0.29 0.42±0.53 1.34±1.52 3.07±0.11 -1.186±3.266 0.62±0.16 2.26±0.19 0.76±1.20 1.15±0.22 1.37±0.28 0.79±2.93 0.30±0.09 120±5 141±15 137±14 Zn 517±20 473±65 520±32 36.9±2.2 29.9±6.6 36.7±2.1 92.1±3.0 77.3±8.1 86.4±5.3 17.2±2.7 16.8±5.2 16.7±1.1 111±6 170±19 165±18 As 3.68±0.41 10.0±2.0 10.4±1.3 5.44±0.49 8.33±0.65 7.42±0.46 3.42±0.34 6.42±0.79 6.42±0.55 3.39±0.35 3.34±0.63 3.39±0.34 44.2±1.4 61.1±7.1 59.8±7.1 Sr 255±74 251±148 247±110 261±111 289±88 285±76 293±89 302±83 313±85 246±72 263±141 265±38 676±350 711±192 697±368 Y 108±18 99.1±11.4 103±5 97.1±1.9 91.8±2.5 93.8±2.4 158±7 137±4 145±4 28.3±0.6 26.3±0.8 26.8±0.4 20.6±0.0 20.2±0.7 19.8±1.0 Nb 3.55±0.24 2.49±0.46 2.69±0.11 4.11±0.49 2.94±0.18 2.95±0.07 3.16±0.35 1.96±0.28 2.47±0.23 0.44±0.07 0.29±0.03 0.28±0.01 35.2±3.1 56.9±5.2 56.6±4.9 Cd 4.81±0.49 2.66±0.47 3.45±0.51 0.22±0.02 0.1±0.2 0.38±0.32 0.63±0.08 0.26±0.21 0.52±0.08 1.05±0.15 0.49±0.20 0.78±0.10 54.6±2.2 62.4±10.0 60.1±9.2 Sn 10.1±0.9 12.2±2.7 11.5±0.7 2.7±0.1 3.47±0.32 3.65±0.16 2.26±0.12 2.78±0.47 3.20±0.39 0.39±0.12 1.44±0.42 1.24±0.14 58.1±8.8 56.3±4.8 55.0±4.4 Sb 0.43±0.12 0.28±0.09 0.27±0.03 1.84±0.22 1.98±0.34 1.87±0.11 0.21±0.04 0.21±0.05 0.22±0.06 0.09±0.05 0.057±0.024 0.051±0.012 20.6±1.1 28.2±3.0 27.6±2.8 Ba 68.6±1.9 64.8±10.7 62.5±4.4 31.6±1.4 29.4±1.3 29.0±0.9 18.1±0.7 16±1 17.8±0.9 283±17 291±14 290±4 58.7±2.0 63.3±3.0 62.1±3.0 La 109±36 916±110 966±55 124±4 118±3 117±3 225±6 203±7 217±6 62.3±1.7 57±2 61.0±0.7 10.4±0.5 11.9±0.6 11.6±0.7 Ce 260±29 231±282 242±142 437±14 414±11 411±12 750±24 679±17 719±19 132±2 130±12 132±1 11.2±0.3 12±0 11.8±0.7 Pr 388±10 295±34 304±16 81.3±2.6 69.4±2.0 67.4±1.6 137±7 114±3 118±3 17.3±0.4 15.3±1.0 15.0±0.1 12.1±0.2 11.9±0.8 11.5±0.8 Nd 153±48 121±144 125±61 407±12 351±10 349±8 675±23 562±17 596±16 63.9±2.8 57.7±2.2 59.3±0.8 11.0±0.4 11.4±0.5 11.0±0.7 Sm 154±5 127±15 131±6 79.9±2.6 71.4±3.1 71.0±1.5 136±4 117±4 122±3 9.17±0.24 8.25±1.18 8.39±0.17 11.0±0.3 11±1 10.8±0.9 Eu 32.3±1.1 27.6±3.1 28.5±1.5 24.0±0.5 23.3±1.0 22.9±0.4 40.9±1.5 37.4±0.8 38.8±0.9 2.73±0.10 2.55±0.11 2.60±0.06 11.8±0.1 11.9±0.7 11.8±0.6 Gd 77.0±15.9 59.2±7.2 56.8±2.9 58.3±2.8 56.1±1.9 56.4±1.3 97.0±1.3 91.1±2.5 94.2±2.0 6.94±0.70 5.94±0.41 5.95±0.08 10.8±0.3 9.96±0.52 9.83±0.54 Tb 8.37±0.78 5.88±0.65 5.89±0.34 7.72±0.33 6.99±0.22 6.98±0.24 12.8±0.7 10.8±0.2 11.2±0.3 1.09±0.06 0.87±0.06 0.91±0.02 10.4±0.0 9.96±0.46 9.76±0.57 Dy 30.9±1.1 25.5±2.9 26.5±1.3 31.2±1.0 28.7±1.1 28.8±0.7 50.4±2.2 44.1±1.7 46.7±1.2 5.61±0.17 5.14±0.23 5.46±0.14 10.7±0.5 10.2±0.5 9.91±0.67 Ho 4.70±0.11 3.96±0.50 4.07±0.27 4.28±0.14 4.10±0.17 3.98±0.09 6.52±0.09 5.90±0.19 6.18±0.14 1.31±0.10 1.04±0.06 1.08±0.03 11.3±0.1 10.6±0.5 10.2±0.7 Er 10.0±1.6 7.41±0.96 7.58±0.39 7.24±0.25 6.69±0.27 6.76±0.58 11.7±0.7 9.80±0.40 10.3±0.3 2.78±0.04 2.44±0.20 2.58±0.05 11.2±0.2 10±1 9.90±0.56 Tm 0.89±0.02 0.72±0.10 0.71±0.04 0.70±0.03 0.64±0.03 0.74±0.36 0.98±0.03 0.83±0.04 0.88±0.03 0.41±0.05 0.31±0.05 0.32±0.01 11.1±0.1 10.7±0.6 10.4±0.7 Yb 4.22±0.10 3.20±0.43 3.37±0.24 3.07±0.16 2.39±0.21 2.44±0.09 4.47±0.25 3.54±0.33 3.55±0.13 1.67±0.05 1.46±0.17 1.56±0.07 11.6±0.1 10.7±0.5 10.5±0.6 Lu 0.51±0.06 0.34±0.03 0.34±0.02 0.40±0.04 0.29±0.02 0.28±0.02 0.49±0.01 0.33±0.02 0.35±0.03 0.24±0.03 0.18±0.02 0.18±0.01 11.1±0.1 10±0 9.88±0.54 Hf 0.21±0.02 0.032±0.028 0.027±0.009 0.19±0.02 0.024±0.017 0.031±0.040 0.23±0.05 0.0093±0.0038 0.012±0.004 0.1±0.0 0.0024±0.0048 0.0026±0.0021 4.73±0.21 5.51±0.56 5.44±0.46 Ta 0.33±0.03 0.28±0.05 0.28±0.02 0.75±0.02 0.57±0.04 0.60±0.02 0.4±0.0 0.25±0.08 0.30±0.03 0.18±0.02 0.10±0.02 0.11±0.01 20.5±5.3 25±3 24.7±2.4 Pb 163±31 218±345 193±90 312±6 435±21 373±10 224±5 267±26 277±26 119±5 157±3 146±3 56.5±1.8 74.6±6.4 73.3±7.2 Th 167±7 132±18 144±9 7.76±0.44 6.94±0.24 7.26±0.19 9.97±0.42 9.21±0.24 9.68±0.24 1.96±0.16 1.63±0.10 1.73±0.03 55.4±1.1 53.6±2.6 52.9±3.1 U 0.07±0.01 0.063±0.019 0.063±0.005 0.03±0.01 0.0043±0.0039 0.0046±0.0011 0.02±0.01 0.0037±0.0026 0.0049±0.0024 0.02±0.01 0.039±0.107 0.0038±0.0017 1.52±0.04 1.67±0.39 1.79±0.42 -
[1] Hori M, Ishikawa T, Nagaishi K, et al. Rare earth elements in a stalagmite from Southwestern Japan: A potential proxy for chemical weathering[J]. Geochemical Journal, 2014, 48(1): 73−84. doi: 10.2343/geochemj.2.0287
[2] Chen W, Simonetti A. In-situ determination of major and trace elements in calcite and apatite, and U-Pb ages of apatite from the Oka carbonatite complex: Insights into a complex crystallization history[J]. Chemical Geology, 2013, 353: 151−172. doi: 10.1016/j.chemgeo.2012.04.022
[3] Chen C F, Liu Y S, Foley S F, et al. Carbonated sediment recycling and its contribution to lithospheric refertilization under the Northern North China Craton[J]. Chemical Geology, 2017, 466: 641−653. doi: 10.1016/j.chemgeo.2017.07.016
[4] Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta, 2000, 64(9): 1557−1565. doi: 10.1016/S0016-7037(99)00400-7
[5] Chen L, Liu Y S, Hu Z C, et al. Accurate determinations of fifty-four major and trace elements in carbonate by LA-ICP-MS using normalization strategy of bulk components as 100%[J]. Chemical Geology, 2011, 284(3-4): 283−295.
[6] Sun D Y, Liu J, Fan C Z, et al. New CGSP carbonate matrix reference materials for LA-ICP-MS analysis[J]. Geostandards and Geoanalytical Research, 2023, 47(1): 7−22. doi: 10.1111/ggr.12460
[7] Desmarchelier J M, Hellstrom J C, McCulloch M T. Rapid trace element analysis of speleothems by ELA-ICP-MS[J]. Chemical Geology, 2006, 231(1-2): 102−117. doi: 10.1016/j.chemgeo.2006.01.002
[8] Fairchild I J, Treble P C. Trace elements in speleothems as recorders of environmental change[J]. Quaternary Science Reviews, 2009, 28(5-6): 449−468. doi: 10.1016/j.quascirev.2008.11.007
[9] Treble P, Shelley J, Chappell J. Comparison of high resolution sub-annual records of trace elements in a modern (1911—1992) speleothem with instrumental climate data from Southwest Australia[J]. Earth and Planetary Science Letters, 2003, 216(1-2): 141−153. doi: 10.1016/S0012-821X(03)00504-1
[10] Smrzka D, Zwicker J, Bach W, et al. The behavior of trace elements in seawater, sedimentary pore water, and their incorporation into carbonate minerals: A review[J]. Facies, 2019, 65: 1−47. doi: 10.1007/s10347-018-0543-2
[11] Kawabe I, Kitahara Y, Naito K. Non-chondritic yttrium/holmium ratio and lanthanide tetrad effect observed in pre-Cenozoic limestones[J]. Geochemical Journal, 1991, 25(1): 31-44.
[12] 陈琳莹, 李崇瑛, 陈多福. 碳酸盐岩中碳酸盐矿物稀土元素分析方法进展[J]. 矿物岩石地球化学通报, 2012, 31(2): 177−183. doi: 10.3969/j.issn.1007-2802.2012.02.012
Chen L Y, Li C Y, Chen D F. Progress of analytical methods of rare earth elements of carbonate minerals in carbonate rocks[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(2): 177−183. doi: 10.3969/j.issn.1007-2802.2012.02.012
[13] Akagi T, Hashimoto Y, Fu F, et al. Variation of the distribution coefficients of rare earth elements in modern coral-lattices: Species and site dependencies[J]. Geochimica et Cosmochimica Acta, 2004, 68(10): 2265−2273. doi: 10.1016/j.gca.2003.12.014
[14] Tan L, Shen C C, Cai Y, et al. Trace-element variations in an annually layered stalagmite as recorders of climatic changes and anthropogenic pollution in Central China[J]. Quaternary Research, 2014, 81(2): 181−188. doi: 10.1016/j.yqres.2013.12.001
[15] Arkhipkin A I, Schuchert P C, Danyushevsky L. Otolith chemistry reveals fine population structure and close affinity to the Pacific and Atlantic oceanic spawning grounds in the migratory southern blue whiting (Micromesistius Australis)[J]. Fisheries Research, 2009, 96(2-3): 188−194. doi: 10.1016/j.fishres.2008.11.002
[16] Jenner F E, Arevalo R D. Major and trace element analysis of natural and experimental igneous systems using LA-ICP-MS[J]. Elements, 2016, 12(5): 311−316. doi: 10.2113/gselements.12.5.311
[17] 刘勇胜, 胡兆初, 李明, 等. LA-ICP-MS 在地质样品元素分析中的应用[J]. 科学通报, 2013, 58(36): 3753−3769. doi: 10.1360/csb2013-58-36-3753
Liu Y S, Hu Z C, Li M, et al. Applications of LA-ICP-MS in the elemental analyses of geological samples[J]. Chinese Science Bulletin, 2013, 58(36): 3753−3769. doi: 10.1360/csb2013-58-36-3753
[18] 罗涛, 胡兆初. 激光剥蚀电感耦合等离子体质谱副矿物 U-Th-Pb 定年新进展[J]. 地球科学, 2022, 47(11): 4122−4144.
Luo T, Hu Z C. Recent advances in U-Th-Pb dating of accessory minerals by laser ablation inductively coupled plasma mass spectrometry Earth Science[J]. Earth Science, 2022, 47(11): 4122−4144.
[19] Liao X H, Hu Z C, Luo T, et al. Determination of major and trace elements in geological samples by laser ablation solution sampling-inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(6): 1126−1134. doi: 10.1039/C9JA00027E
[20] Luo T, Wang Y, Li M, et al. Determination of major and trace elements in alloy steels by nanosecond and femtosecond laser ablation ICP-MS with non-matrix-matched calibration[J]. Atomic Spectroscopy, 2020, 41(1): 11−19. doi: 10.46770/AS.2020.01.002
[21] Mertz-Kraus R, Brachert T, Jochum K, et al. LA-ICP-MS analyses on coral growth increments reveal heavy winter rain in the Eastern Mediterranean at 9Ma[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 273(1-2): 25−40. doi: 10.1016/j.palaeo.2008.11.015
[22] Thompson J A, Thompson J M, Goemann K, et al. Use of non-matrix matched reference materials for the accurate analysis of calcium carbonate by LA-ICP-MS[J]. Geostandards and Geoanalytical Research, 2022, 46(1): 97−115. doi: 10.1111/ggr.12405
[23] Jochum K P, Scholz D, Stoll B, et al. Accurate trace element analysis of speleothems and biogenic calcium carbonates by LA-ICP-MS[J]. Chemical Geology, 2012, 318: 31−44.
[24] Strnad L, Ettler V, Mihaljevic M, et al. Determination of trace elements in calcite using solution and laser ablation ICP‐MS: Calibration to NIST SRM glass and USGS MACS carbonate, and application to real landfill calcite[J]. Geostandards and Geoanalytical Research, 2009, 33(3): 347−355. doi: 10.1111/j.1751-908X.2009.00010.x
[25] Bourdin C, Douville E, Genty D. Alkaline-earth metal and rare-earth element incorporation control by ionic radius and growth rate on a stalagmite from the Chauvet Cave, Southeastern France[J]. Chemical Geology, 2011, 290(1-2): 1−11. doi: 10.1016/j.chemgeo.2011.08.006
[26] Wu C C, Burger M, Günther D, et al. Highly-sensitive open-cell LA-ICPMS approaches for the quantification of rare earth elements in natural carbonates at parts-per-billion levels[J]. Analytica Chimica Acta, 2018, 1018: 54−61. doi: 10.1016/j.aca.2018.02.021
[27] Russo R E, Mao X, Gonzalez J J, et al. Femtosecond laser ablation ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2002, 17(9): 1072−1075. doi: 10.1039/B202044K
[28] Fernández B, Claverie F, Pécheyran C, et al. Direct analysis of solid samples by fs-LA-ICP-MS[J]. TrAC Trends in Analytical Chemistry, 2007, 26(10): 951−966. doi: 10.1016/j.trac.2007.08.008
[29] Bian Q, Garcia C C, Koch J, et al. Non-matrix matched calibration of major and minor concentrations of Zn and Cu in brass, aluminium and silicate glass using NIR femtosecond laser ablation inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2006, 21(2): 187−191. doi: 10.1039/B513690C
[30] Horn I, von Blanckenburg F. Investigation on elemental and isotopic fractionation during 196nm femtosecond laser ablation multiple collector inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2007, 62(4): 410−422. doi: 10.1016/j.sab.2007.03.034
[31] Neff C, Becker P, Günther D. Parallel flow ablation cell for short signal duration in LA-ICP-TOFMS element imaging[J]. Journal of Analytical Atomic Spectrometry, 2022, 37(3): 677−683. doi: 10.1039/D1JA00421B
[32] ,Becker P, Günther D. Reducing sample amount for forensic glass analysis using LA-ICP-TOFMS and multivariate statistics[J]. Journal of Analytical Atomic Spectrometry, 2023, 38: 1704-1712.
[33] Hu Z C, Liu Y S, Gao S, et al. A local aerosol extraction strategy for the determination of the aerosol composition in laser ablation inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(9): 1192−1203. doi: 10.1039/b803934h
[34] Luo T, Wang Y, Hu Z C, et al. Further investigation into ICP-induced elemental fractionation in LA-ICP-MS using a local aerosol extraction strategy[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(4): 941−949. doi: 10.1039/C4JA00483C
[35] 冯彦同, 张文, 胡兆初, 等. 激光剥蚀电感耦合等离子体质谱仪新分析模式及其在地球科学中的应用[J]. 中国科学: 地球科学, 2022, 52(1): 98-121.
Feng Y T, Zhang W, Hu Z C, et al. A new analytical mode and application of the laser ablation inductively coupled plasma mass spectrometer in the Earth sciences[J]. Science China Earth Sciences, 2022, 65(1): 182−196.
[36] Luo T, Hu Z C, Zhang W, et al. Reassessment of the influence of carrier gases He and Ar on signal intensities in 193nm excimer LA-ICP-MS analysis[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(10): 1655−1663. doi: 10.1039/C8JA00163D
[37] Jochum K P, Weis U, Stoll B, et al. Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines[J]. Geostandards and Geoanalytical Research, 2011, 35(4): 397−429. doi: 10.1111/j.1751-908X.2011.00120.x
[38] Fietzke J, Liebetrau V, Günther D, et al. An alternative data acquisition and evaluation strategy for improved isotope ratio precision using LA-MC-ICP-MS applied to stable and radiogenic strontium isotopes in carbonates[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(7): 955−961. doi: 10.1039/b717706b
[39] Pettke T, Oberli F, Audétat A, et al. Quantification of transient signals in multiple collector inductively coupled plasma mass spectrometry: Accurate lead isotope ratio determination by laser ablation of individual fluid inclusions[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(3): 475−492. doi: 10.1039/C0JA00140F
[40] Kappel S, Boulyga S, Dorta L, et al. Evaluation strategies for isotope ratio measurements of single particles by LA-MC-ICPMS[J]. Analytical and Bioanalytical Chemistry, 2013, 405: 2943−2955. doi: 10.1007/s00216-012-6674-3
[41] 罗涛. LA-ICP-MS 分析过程中 ICP 引起的元素分馏效应研究[D]. 武汉: 中国地质大学(武汉), 2015.
Luo T. Further investigation into ICP-induced elemental fractionation in LA-ICP-MS using a local aerosol extraction strategy[D]. Wuhan: China University of Geosciences (Wuhan), 2015.
[42] Hu Z C, Gao S, Liu Y S, et al. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(8): 1093−1101. doi: 10.1039/b804760j
[43] Hu Z C, Liu Y S, Gao S, et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(9): 1391−1399. doi: 10.1039/c2ja30078h
[44] Wu S T, Yang M, Yang Y H, et al. Improved in situ zircon U-Pb dating at high spatial resolution (5-16μm) by laser ablation-single collector-sector field-ICP-MS using Jet sample and X skimmer cones[J]. International Journal of Mass Spectrometry, 2020, 456: 116394. doi: 10.1016/j.ijms.2020.116394
[45] Yuan H L, Bao Z A, Chen K Y, et al. Improving the sensitivity of a multi-collector inductively coupled plasma mass spectrometer via expansion-chamber pressure reduction[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(5): 1011−1017. doi: 10.1039/C8JA00448J
[46] Longerich H P, Jackson S E, Günther D. Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation[J]. Journal of Analytical Atomic Spectrometry, 1996, 11(9): 899−904. doi: 10.1039/JA9961100899
-