中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

粉末压片-X射线荧光光谱法测定小样品量土壤和沉积物中主量元素

赵红坤, 刘亚轩, 马生明, 张艳飞, 张鹏鹏, 李强, 李振清, 陈其慎, 李勇, 顾雪, 陈宏强. 粉末压片-X射线荧光光谱法测定小样品量土壤和沉积物中主量元素[J]. 岩矿测试, 2025, 44(2): 305-315. doi: 10.15898/j.ykcs.202403040030
引用本文: 赵红坤, 刘亚轩, 马生明, 张艳飞, 张鹏鹏, 李强, 李振清, 陈其慎, 李勇, 顾雪, 陈宏强. 粉末压片-X射线荧光光谱法测定小样品量土壤和沉积物中主量元素[J]. 岩矿测试, 2025, 44(2): 305-315. doi: 10.15898/j.ykcs.202403040030
ZHAO Hongkun, LIU Yaxuan, MA Shengming, ZHANG Yanfei, ZHANG Pengpeng, LI Qiang, LI Zhenqing, CHEN Qishen, LI Yong, GU Xue, CHEN Hongqiang. Determination of Major Elements in Small-Weight Soil and Sediment Samples by X-Ray Fluorescence Spectrometry with Pressed-Powder Pellets[J]. Rock and Mineral Analysis, 2025, 44(2): 305-315. doi: 10.15898/j.ykcs.202403040030
Citation: ZHAO Hongkun, LIU Yaxuan, MA Shengming, ZHANG Yanfei, ZHANG Pengpeng, LI Qiang, LI Zhenqing, CHEN Qishen, LI Yong, GU Xue, CHEN Hongqiang. Determination of Major Elements in Small-Weight Soil and Sediment Samples by X-Ray Fluorescence Spectrometry with Pressed-Powder Pellets[J]. Rock and Mineral Analysis, 2025, 44(2): 305-315. doi: 10.15898/j.ykcs.202403040030

粉末压片-X射线荧光光谱法测定小样品量土壤和沉积物中主量元素

  • 基金项目: 中国地质调查局地质调查项目(DD20230040,DD20242247);国家重点研发计划项目(2018YFE0208300,2021YFC2903001);河北省中央引导地方科技发展资金项目(246Z4205G)
详细信息
    作者简介: 赵红坤,博士,主要从事矿产资源调查评价和分析测试研究。E-mail:878063323@qq.com
    通讯作者: 刘亚轩,博士,教授级高级工程师,主要从事分析测试和标准物质研究。E-mail:ll.yx@hotmail.com。;  马生明,博士,研究员,主要从事矿产勘查地球化学理论方法研究。E-mail:msmigge@163.com
  • 中图分类号: O657.34

Determination of Major Elements in Small-Weight Soil and Sediment Samples by X-Ray Fluorescence Spectrometry with Pressed-Powder Pellets

More Information
  • 实现小样品量的X射线荧光光谱(XRF)分析测试是获取珍贵和稀缺样品中化学组成过程需要解决的关键技术问题。同时,应用XRF对标准物质进行均匀性检验在最小取样量上也存在争议。在目前地质分析样品(包括标准物质)大多为74μm(−200目)粒度水平下,XRF分析压片法的常规样品量为4g左右。本文利用0.1g样品量进行粉末压片,通过更换XRF试样盒面罩直径为12mm,缩小视野光栏直径为10mm,同时在优化制样条件和仪器测量条件基础上,利用32种不同类型、不同含量梯度的地球化学标准物质,建立了0.1g样品量条件下XRF粉末直接压片法测定土壤和沉积物样品中10种主量元素(SiO2、Al2O3、TFe2O3、MgO、CaO、Na2O、K2O、Mn、Ti和P)的分析方法,大幅度降低了样品量。0.1g样品量分析方法检出限为14μg/g~0.35%,精密度(RSD,n=12)小于3.9%。经对比分析,采用本文0.1g样品量方法分析不同含量标准物质的测定值均在标准值范围内,相对误差绝对值(|RE|)在0~15.7%,与4g样品量分析结果(|RE|在0.3%~28.3%)差异不大。采用本文方法0.1g样品量和常规方法4g样品量两种方法分析实际样品的测定结果基本吻合,验证了建立的0.1g样品量XRF分析方法可靠。

  • 加载中
  • 图 1  粉末压片法制样

    Figure 1. 

    表 1  样品量为0.1g仪器优化测定条件

    Table 1.  The optimum instrument parameters for 0.1g sampling weight

    组分 分析线 电压(kV) 电流(mA) 准直器 晶体 探测器 PHA
    SiO230120S4PETPC110~320
    Al2O330120S4PETPC90~320
    TFe2O36060S2LiF(200)SC100~350
    MgO30120S4RX25PC110~330
    CaO30120S4LiF(200)PC100~320
    Na2O30120S4RX25PC100~320
    K2O30120S4LiF(200)PC110~300
    Mn6060S2LiF(200)SC100~350
    P30120S4GePC100~300
    Ti4090S2LiF(200)PC100~320
    下载: 导出CSV

    表 2  样品量为4g仪器测定条件

    Table 2.  The instrument measurement parameters for 4g sampling weight

    组分 分析线 衰减器 电压(kV) 电流(mA) 准直器 晶体 探测器 PHA
    SiO2 1/10 50 50 S4 PET PC 100~305
    Al2O3 1/10 50 50 S4 PET PC 100~310
    TFe2O3 1/10 50 50 S2 LiF(200) SC 100~350
    MgO 1/1 50 50 S4 RX25 PC 110~350
    CaO 1/10 50 50 S4 LiF(200) PC 100~320
    Na2O 1/1 50 50 S4 RX25 PC 130~270
    K2O 1/1 50 50 S4 LiF(200) PC 120~280
    Mn 1/1 50 50 S2 LiF(200) SC 110~345
    P 1/1 50 50 S4 Ge PC 155~270
    Ti 1/1 50 50 S2 LiF(200) SC 100~345
    下载: 导出CSV

    表 3  标准曲线绘制及校正情况

    Table 3.  Standard curve drawing and correction

    组分含量范围基体校正准确度(%)相关系数
    SiO232.69~88.89Si,Al,Fe,Ca,Mg,K,P1.100.9947
    Al2O32.84~29.26Si,Fe,Ca,Mg,K,Na,Mn,Ti,P0.410.9966
    TFe2O31.46~18.76Al,Fe,Ca,Mg,K,Na,Ti,Mn,P0.0870.9997
    MgO0.12~3.40Si,Fe,Al,Ca,Mg,K,Na,Mn,Ti,P0.0850.9964
    CaO0.10~8.27Al,Fe,Ca,Mg,K,Na,Ti,Mn,P0.110.9991
    Na2O0.039~8.99Al,Fe,Ca,Mg,K,Na,Ti,Mn,P0.0640.9994
    K2O0.125~4.31Al,Fe,Ca,Mg,K,Na,Ti,Mn,P0.0330.9992
    Mn218~1780Al,Fe,Ca,Mg,K,Na,Ti,Mn,P0.00190.9986
    P166~1520Al,Fe,Ca,Mg,K,Na,Ti,Mn,P0.00340.9943
    Ti127~20200Al,Fe,Ca,Mg,K,Na,Ti,Mn,P0.01000.9996
    注:含量范围数据中,Mn、P、Ti含量单位为mg/kg,其余组分含量单位为%。
    下载: 导出CSV

    表 4  方法精密度

    Table 4.  Precision tests of the method

    组分RSD (%)组分RSD (%)
    GBW07376
    (n=12)
    GBW07377
    (n=12)
    GBW07376
    (n=12)
    GBW07377
    (n=12)
    SiO20.30.4Na2O1.82.7
    Al2O31.01.2K2O0.71.0
    TFe2O30.90.8Mn1.52.6
    MgO1.71.5P3.42.0
    CaO0.90.8Ti3.60.9
    下载: 导出CSV

    表 5  方法准确度

    Table 5.  Accuracy tests of the method

    组分 GBW07425 GBW07428
    标准值 本文方法测定值 常规方法测定值 标准值 本文方法测定值 常规方法测定值
    0.1g样品量 |RE|(%) 4g样品量 |RE|(%) 0.1g样品量 |RE|(%) 4g样品量 |RE|(%)
    SiO2 69.42±0.28 69.64 0.3 66.26 4.6 64.51±0.36 61.70 4.4 60.72 5.9
    Al2O3 13.14±0.06 13.27 1.0 12.35 6.0 14.43±0.13 15.16 5.1 14.23 1.4
    TFe2O3 4.21±0.06 4.37 3.8 4.19 0.5 5.32±0.06 5.51 3.6 5.48 3.0
    MgO 1.20±0.04 1.13 5.8 1.01 15.8 1.90±0.06 2.14 12.6 1.95 2.6
    CaO 1.33±0.03 1.44 8.3 1.32 0.8 2.45±0.05 2.69 9.8 2.52 2.9
    Na2O 1.98±0.07 1.98 0 1.74 12.1 1.59±0.07 1.34 15.7 1.14 28.3
    K2O 2.70±0.04 2.76 2.2 2.69 0.4 2.46±0.07 2.54 3.3 2.56 4.1
    Mn 572±14 603 5.4 556 2.8 688±15 715 3.9 676 1.7
    P 483±24 485 0.4 498 3.1 730±28 724 0.8 701 4.0
    Ti 3920±60 4071 3.9 3802 3.0 4060±130 4234 4.3 4072 0.3
    组分 GBW07388 GBW07378
    标准值 本文方法测定值 常规方法测定值 标准值 本文方法测定值 常规方法测定值
    0.1g样品量 |RE|(%) 4g样品量 |RE|(%) 0.1g样品量 |RE|(%) 4g样品量 |RE|(%)
    SiO2 67.33±0.36 67.34 0 64.43 4.3 68.62±0.55 68.12 0.7 66.92 2.5
    Al2O3 14.49±0.17 14.35 1.0 14.04 3.1 13.21~13.38(13.31) 13.00 2.3 12.00 9.8
    TFe2O3 5.52±0.07 5.78 4.7 5.62 1.8 4.24±0.13 4.33 2.1 4.19 1.2
    MgO 1.34±0.11 1.38 3.0 1.33 0.7 1.41±0.05 1.38 2.1 1.16 17.7
    CaO 1.09±0.05 1.15 5.5 1.10 0.9 2.94±0.10 2.74 6.8 2.75 6.5
    Na2O 1.26±0.07 1.24 1.6 1.02 19.0 2.48±0.09 2.66 7.3 2.44 1.6
    K2O 2.07±0.08 2.06 0.5 2.06 0.5 2.48±0.10 2.5 0.8 2.42 2.4
    Mn 841±15 878 4.4 812 3.4 960±24 990 3.1 950 1.0
    P 287±32 305 6.3 296 3.1 499±15 485 2.8 493 1.2
    Ti 4630±70 4809 3.9 4589 0.9 3020±120 3018 0.1 2943 2.5

    注:Mn、P、Ti含量单位为mg/kg,其他组分含量单位为%,Al2O3测定值数据为95%置信区间的不确定度范围,括号内的数据为标准值的中位值。

    下载: 导出CSV

    表 6  样品量为0.1g和4g分析结果对比

    Table 6.  Comparison of analysis results between 0.1g and 4g samples

    组分 实际样品1测定值 实际样品2测定值
    0.1g样品量 4g样品量 0.1g样品量 4g样品量
    SiO2 72.8 67.88 71.88 70.31
    Al2O3 8.73 8.59 11.75 11.51
    TFe2O3 3.32 3.54 3.52 3.42
    MgO 1.17 1.04 0.75 0.67
    CaO 4.72 4.98 2.86 2.99
    Na2O 0.49 0.65 2.26 2.16
    K2O 1.75 1.83 3.14 3.18
    Mn 648 707 774 756
    P 361 385 388 428
    Ti 2535 2909 2292 2345
    注:Mn、P、Ti含量单位为mg/kg,其他组分含量单位为%。
    下载: 导出CSV

    表 7  方法检出限

    Table 7.  Detection limits of elements

    方法参数 GBW07120 GBW07730
    SiO2 Al2O3 TFe2O3 Na2O Mn P Ti MgO CaO K2O
    s 0.024 0.0049 0.005 0.01 4.6 4.6 25 0.116 0.003 0.0005
    检出限 0.07 0.01 0.02 0.03 14 14 75 0.35 0.01 0.002
    注:Mn、P、Ti含量单位为μg/g,其他组分含量单位为%。
    下载: 导出CSV
  • [1]

    Krishna A K, Khanna T C, Mohan K R. Rapid quantitative determination of major and trace elements in silicate rocks and soils employing fused glass discs using wavelength dispersive X-ray fluorescence spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2016, 122: 165−171. doi: 10.1016/j.sab.2016.07.004

    [2]

    赵红坤, 郝亚波, 田有国, 等. 熔融制样-X射线荧光光谱法测定小取样量地球化学样品中的主量元素[J]. 物探与化探, 2020, 44(4): 778−783. doi: 10.11720/wtyht.2020.0042

    Zhao H K, Hao Y B, Tian Y G, et al. Melting sample preparation-X-ray fluorescence spectrometry was used to measure a small amount of soil certified reference material[J]. Geophysical and Geochemical Exploration, 2020, 44(4): 778−783. doi: 10.11720/wtyht.2020.0042

    [3]

    曾小家, 李世杰, 李雄耀, 等. 月壤主量元素无损分析方案预研究[J]. 矿物岩石地球化学通报, 2015, 34(6): 1282−1286. doi: 10.3969/j.issn.1007-2802.2015.06.021

    Zeng X J, Li S J, Li X Y, et al. Method for nondestructive measurement of major elements of lunar soil samples[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(6): 1282−1286. doi: 10.3969/j.issn.1007-2802.2015.06.021

    [4]

    Ichikawa S, Nakamura T. X-ray fluorescence analysis with micro glass beads using milligram-scale siliceous samples for archeology and geochemistry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2014, 96: 40−50. doi: 10.1016/j.sab.2014.04.002

    [5]

    金秉慧. 地质标准物质十年回顾[J]. 岩矿测试, 2003, 22(3): 188−200.

    Jin B H. Geological certified reference materials: A review since 1992[J]. Rock and Mineral Analysis, 2003, 22(3): 188−200.

    [6]

    王毅民, 高玉淑, 王晓红. 中国地质标准物质研制和标准方法制定的成果与思考[J]. 岩矿测试, 2006, 25(1): 55−63.

    Wang Y M, Gao Y S, Wang X H. A review on study of geochemical reference materials and reference methods in China[J]. Rock and Mineral Analysis, 2006, 25(1): 55−63.

    [7]

    王毅民, 王晓红, 何红蓼, 等. 地质标准物质的最小取样量问题[J]. 地质通报, 2009, 28(6): 804−807.

    Wang Y M, Wang X H, He H L, et al. The minimum sampling mass of geostandards reference materials[J]. Geological Bulletin of China, 2009, 28(6): 804−807.

    [8]

    王晓红, 王毅民, 高玉淑, 等. 地质标准物质均匀性检验方法评介与探讨[J]. 岩矿测试, 2010, 29(6): 735−741.

    Wang X H, Wang Y M, Gao Y S, et al. A review on homogeneity testing techniques for geochemical reference materials in China[J]. Rock and Mineral Analysis, 2010, 29(6): 735−741.

    [9]

    赵红坤, 于阗, 肖志博, 等. 粉末压片-X射线荧光光谱法在地球化学标准物质均匀性检验中的应用研究[J]. 光谱学与光谱分析, 2021, 41(3): 755−762. doi: 10.3964/j.issn.1000-0593(2021)03-0755-08

    Zhao H K, Yu T, Xiao Z B, et al. Application of powder tableting-X-ray fluorescence spectroscopy in the uniformity test of geochemical reference standards[J]. Spectroscopy and Spectral Analysis, 2021, 41(3): 755−762. doi: 10.3964/j.issn.1000-0593(2021)03-0755-08

    [10]

    王毅民, 邓赛文, 李松, 等. X射线荧光光谱在地球化学调查中的应用评介[J]. 冶金分析, 2020, 40(10): 50−62. doi: 10.13228/j.boyuan.issn1000-7571.011157

    Wang Y M, Deng S W, Li S, et al. Review on the application of X-ray fluorescence spectrometry in geochemical survey[J]. Metallurgical Analysis, 2020, 40(10): 50−62. doi: 10.13228/j.boyuan.issn1000-7571.011157

    [11]

    白金峰, 杜雪苗, 郭心玮, 等. 应用地球化学样品分析测试技术进展[J]. 物探化探计算技术, 2022, 44(6): 842−853. doi: 10.3969/j.issn.1001-1749.2022.06.15

    Bai J F, Du X M, Guo X W, et al. Advancement of sample analysis and testing technologies in applied geochemistry[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2022, 44(6): 842−853. doi: 10.3969/j.issn.1001-1749.2022.06.15

    [12]

    刘玉纯, 林庆文, 马玲. X射线荧光光谱技术在地质分析中的应用及发展动态[J]. 化学分析计量, 2019, 28(4): 125−131. doi: 10.3969/j.issn.1008-6145.2019.04.030

    Liu Y C, Lin Q W, Ma L. Applications and development of X-ray fluorescence spectrometers in geological analysis[J]. Chemical Analysis and Meterage, 2019, 28(4): 125−131. doi: 10.3969/j.issn.1008-6145.2019.04.030

    [13]

    李小莉, 王毅民, 邓赛文, 等. 中国X射线荧光光谱分析的地学应用60年[J]. 光谱学与光谱分析, 2023, 43(10): 2989−2998. doi: 10.3964/j.issn1000-0593(2023)10-2989-10

    Li X L, Wang Y M, Deng S W, et al. Application of X-ray fluorescence spectrometry in geological and mineral analysis for 60 years[J]. Spectroscopy and Spectral Analysis, 2023, 43(10): 2989−2998. doi: 10.3964/j.issn1000-0593(2023)10-2989-10

    [14]

    李小莉, 王毅民, 高新华, 等. 1960—2020年中国X射线荧光光谱分析评述文献评介[J]. 理化检验(化学分册), 2023, 59(10): 1231−1240. doi: 10.11973/lhjy-hx202310024

    Li X L, Wang Y M, Gao X H, et al. Evaluation of review literatures of X-ray fluorescence spectrometry analysis in China from 1960 to 2020[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2023, 59(10): 1231−1240. doi: 10.11973/lhjy-hx202310024

    [15]

    谢学锦, 任天祥, 奚小环, 等. 中国区域化探全国扫面计划卅年[J]. 地球学报, 2009, 30(6): 700−716.

    Xie X J, Ren T X, Xi X H, et al. The implementation of the regional geochemistry-national reconnaissance program (RGNR) in China in the past thirty years[J]. Acta Geoscientica Sinica, 2009, 30(6): 700−716.

    [16]

    王学求. 勘查地球化学近十年进展[J]. 矿物岩石地球化学通报, 2013, 32(2): 190−197.

    Wang X Q. A decade of exploration geochemistry[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(2): 190−197.

    [17]

    王学求. 勘查地球化学80年来重大事件回顾[J]. 中国地质, 2013, 40(1): 322−330.

    Wang X Q. Landmark events of exploration geochemistry in the past 80 years[J]. Geology in China, 2013, 40(1): 322−330.

    [18]

    王学求. 全球地球化学基准: 了解过去, 预测未来[J]. 地学前缘, 2012, 19(3): 7−18.

    Wang X Q. Global geochemical baselines: Understanding the past and predicting the future[J]. Earth Science Frontiers, 2012, 19(3): 7−18.

    [19]

    王学求, 周建, 徐善法, 等. 全国地球化学基准网建立与土壤地球化学基准值特征[J]. 中国地质, 2016, 43(5): 1469−1480.

    Wang X Q, Zhou J, Xu S F, et al. China soil geochemical baselines networks: Data characteristics[J]. Geology in China, 2016, 43(5): 1469−1480.

    [20]

    王毅民, 张学华, 邓赛文, 等. X射线荧光光谱在海洋地质及矿产资源调查分析中的应用评介[J]. 冶金分析, 2020, 40(10): 63−75. doi: 10.13228/j.boyuan.issn1000-7571.011127

    Wang Y M, Zhang X H, Deng S W, et al. Review on the application of X-ray fluorescence spectrometry in marine geology and mineral resources survey[J]. Metallurgical Analysis, 2020, 40(10): 63−75. doi: 10.13228/j.boyuan.issn1000-7571.011127

    [21]

    王毅民, 邓赛文, 王祎亚, 等. X射线荧光光谱在矿石分析中的应用评介——总论[J]. 冶金分析, 2020, 40(10): 32−49. doi: 10.13228/j.boyuan.issn1000-7571.011164

    Wang Y M, Deng S W, Wang Y Y, et al. Review on the application of X-ray fluorescence spectrometry in ores’ analysis[J]. Metallurgical Analysis, 2020, 40(10): 32−49. doi: 10.13228/j.boyuan.issn1000-7571.011164

    [22]

    邓赛文, 王毅民, 孙晓飞, 等. X射线荧光光谱技术在铁矿石分析中的应用文献评介[J]. 冶金分析, 2019, 39(11): 30−49. doi: 10.13228/j.boyuan.issn1000-7571.010901

    Deng S W, Wang Y M, Sun X F, et al. Literature review on application of X-ray fluorescence spectrometry in analysis of iron ores[J]. Metallurgical Analysis, 2019, 39(11): 30−49. doi: 10.13228/j.boyuan.issn1000-7571.010901

    [23]

    李小莉, 邓赛文, 王毅民, 等. X射线荧光光谱在碳酸盐类矿石分析中的应用文献评介[J]. 冶金分析, 2022, 42(3): 33−46. doi: 10.13228/j.boyuan.issn1000-7571.011552

    Li X L, Deng S W, Wang Y M, et al. Review on application of X-ray fluorescence spectrometry in carbonate ore analysis[J]. Metallurgical Analysis, 2022, 42(3): 33−46. doi: 10.13228/j.boyuan.issn1000-7571.011552

    [24]

    李松, 邓赛文, 王毅民, 等. X射线荧光光谱在锰矿石分析中的应用文献评介[J]. 冶金分析, 2021, 41(3): 18−26. doi: 10.13228/j.boyuan.issn1000-7571.011289

    Li S, Deng S W, Wang Y M, et al. Review on the application of X-ray fluorescence spectrometry in analysis of manganese ore[J]. Metallurgical Analysis, 2021, 41(3): 18−26. doi: 10.13228/j.boyuan.issn1000-7571.011289

    [25]

    殷绍泉, 邓赛文, 王毅民, 等. X射线荧光光谱在铜矿石分析中的应用文献评介[J]. 冶金分析, 2019, 39(7): 43−52. doi: 10.13228/j.boyuan.issn1000-7571.010634

    Yin S Q, Deng S W, Wang Y M, et al. Review on the application of X-ray fluorescence spectrometry in copper ore analysis[J]. Metallurgical Analysis, 2019, 39(7): 43−52. doi: 10.13228/j.boyuan.issn1000-7571.010634

    [26]

    李松, 邓赛文, 王毅民, 等. X射线荧光光谱技术在铬铁矿石分析中的应用文献评介[J]. 冶金分析, 2019, 39(8): 67−75. doi: 10.13228/j.boyuan.issn1000-7571.010698

    Li S, Deng S W, Wang Y M, et al. Review on the application of X-ray fluorescence spectrometry in analysis of chromite ore[J]. Metallurgical Analysis, 2019, 39(8): 67−75. doi: 10.13228/j.boyuan.issn1000-7571.010698

    [27]

    邓赛文, 王祎亚, 王毅民. 中国磷矿石分析文献评介[J]. 岩矿测试, 2011, 30(3): 384−390.

    Deng S W, Wang Y Y, Wang Y M. Review on literatures of phosphate ores analysis in China[J]. Rock and Mineral Analysis, 2011, 30(3): 384−390.

    [28]

    王祎亚, 邓赛文, 王毅民, 等. X射线荧光光谱在痕量和超轻元素分析中的应用评介[J]. 冶金分析, 2020, 40(10): 12−31. doi: 10.13228/j.boyuan.issn1000-7571.011156

    Wang Y Y, Deng S W, Wang Y M, et al. Review on the application of X-ray fluorescence spectrometry in trace and ultra-light elements analysis[J]. Metallurgical Analysis, 2020, 40(10): 12−31. doi: 10.13228/j.boyuan.issn1000-7571.011156

    [29]

    刘建坤, 郑荣华, 骆宏玉, 等. 粉末压片-X射线荧光光谱法测定矿石中高含量铷[J]. 理化检验(化学分册), 2014, 50(11): 1451−1452.

    Liu J K, Zheng R H, Luo H Y, et al. Determination of high content rubidium in ores by X-ray fluorescence spectrometry with pressed powder pellet[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2014, 50(11): 1451−1452.

    [30]

    曾江萍, 郑智慷, 张楠, 等. 粉末压片制样-X射线荧光光谱法测定锂云母中铷、铯及主量组分[J]. 冶金分析, 2019, 39(10): 73−77. doi: 10.13228/j.boyuan.issn1000-7571.010714

    Zeng J P, Zheng Z K, Zhang N, et al. Determination of rubidium, cesium and major components in lithium mica by X-ray fluorescence spectrometry with pressed powder pellet[J]. Metallurgical Analysis, 2019, 39(10): 73−77. doi: 10.13228/j.boyuan.issn1000-7571.010714

    [31]

    霍红英, 邹敏, 张天益, 等. 粉末压片-能量色散X射线荧光光谱法测定钛精矿中6种组分[J]. 冶金分析, 2019, 39(9): 26−31. doi: 10.13228/j.boyuan.issn1000-7571.010629

    Huo H Y, Zou M, Zhang T Y, et al. Determination of six components in titanium concentrate by energy dispersive X-ray fluorescence spectrometry with pressed powder pellet[J]. Metallurgical Analysis, 2019, 39(9): 26−31. doi: 10.13228/j.boyuan.issn1000-7571.010629

    [32]

    修凤凤, 樊勇, 李俊雨, 等. 粉末压片-波长色散X射线荧光光谱法测定金矿型构造叠加晕样品中18种次量元素[J]. 岩矿测试, 2018, 37(5): 526−532. doi: 10.15898/j.cnki.11-2131/td.201704170061

    Xiu F F, Fan Y, Li J Y, et al. Determination of 18 minor elements in the structural superimposed halo samples from gold deposits by wavelength dispersive X-ray fluorescence spectrometry with pressed-powder pellets[J]. Rock and Mineral Analysis, 2018, 37(5): 526−532. doi: 10.15898/j.cnki.11-2131/td.201704170061

    [33]

    吕胜男, 卢兵, 赵文志, 等. X射线荧光光谱法同时测定土壤和水系沉积物中23种主次痕量组分[J]. 理化检验(化学分册), 2023, 59(7): 764−770. doi: 10.11973/lhjy-hx202307004

    Lyu S N, Lu B, Zhao W Z, et al. Simultaneous determination of 23 major, minor and trace components in soil and stream sediment by X-ray fluorescence spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2023, 59(7): 764−770. doi: 10.11973/lhjy-hx202307004

    [34]

    钟坚海, 叶华欣, 李泳涛, 等. 压片制样-波长色散X射线荧光光谱法测定土壤和沉积物中主、次及微量元素[J]. 中国无机分析化学, 2022, 12(6): 34−39. doi: 10.3969/j.issn.2095-1035.2022.06.006

    Zhong J H, Ye H X, Li Y T, et al. Determination of major, minor and micro elements in soils and sediments by wavelength dispersive X-ray fluorescence spectrometry with pressed powder pellet[J]. Chinese Journal of Inorganic Analytical Chemistry, 2022, 12(6): 34−39. doi: 10.3969/j.issn.2095-1035.2022.06.006

    [35]

    杏艳, 田渭花, 刘锦华, 等. 单波长激发能量色散X射线荧光光谱法测定土壤和沉积物中19种元素[J]. 环境化学, 2022, 41(10): 3182−3195. doi: 10.7524/j.issn.0254-6108.2022031003

    Xing Y, Tian W H, Liu J H, et al. Determination of 19 elements in soils and sediments by single-wavelength excitation energy dispersive X-ray fluorescence spectrometry[J]. Environmental Chemistry, 2022, 41(10): 3182−3195. doi: 10.7524/j.issn.0254-6108.2022031003

    [36]

    夏传波, 钱惠芬, 田兴磊, 等. X射线荧光光谱法测定新研制土壤标准物质中11种元素的含量[J]. 理化检验(化学分册), 2022, 58(7): 811−817. doi: 10.11973/lhjy-hx202207013

    Xia C B, Qian H F, Tian X L, et al. Determination of 11 elements in newly developed soil reference materials by X-ray fluorescence spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2022, 58(7): 811−817. doi: 10.11973/lhjy-hx202207013

    [37]

    李强, 张学华, 黄雪华, 等. 高压粉末制样-X射线荧光光谱法测定海洋沉积物中28种组分[J]. 冶金分析, 2022, 42(6): 9−17. doi: 10.13228/j.boyuan.issn1000-7571.011614

    Li Q, Zhang X H, Huang X H, et al. Determination of twenty-eight components in marine sediment by X-ray fluorescence spectrometry with high-pressure powder pelleting preparation[J]. Metallurgical Analysis, 2022, 42(6): 9−17. doi: 10.13228/j.boyuan.issn1000-7571.011614

    [38]

    杨立坤, 毛雪飞, 郑磊, 等. 单波长激发-能量色散X射线荧光光谱法测定土壤全量硅、铝、铁、钾、钠、钙、镁、锰、磷、钛、硫[J]. 中国无机分析化学, 2023, 13(12): 1429−1436. doi: 10.3969/j.issn.2095-1035.2023.12.023

    Yang L K, Mao X F, Zheng L, et al. Determination of total silicon, aluminum, iron, potassium, sodium, calcium, magnesium, manganese, phosphorus, titanium and sulfur in soil by single wavelength excitation-energy dispersive X-ray fluorescence spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(12): 1429−1436. doi: 10.3969/j.issn.2095-1035.2023.12.023

    [39]

    Xue D S, Su B X, Zhang D P, et al. Quantitative verification of 1∶100 diluted fused glass beads for X-ray fluorescence analysis of geological specimens[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(12): 2826−2833. doi: 10.1039/d0ja00273a

    [40]

    耿梅梅, 张丽萍, 王久荣, 等. 样品粒径、制样方法对波长色散X射线荧光光谱法测定土壤样品中19种元素的影响[J]. 中国土壤与肥料, 2023(6): 239−250. doi: 10.11838/sfsc.1673-6257.22283

    Geng M M, Zhang L P, Wang J R, et al. Effects of sample particle size and preparation on the determination of 19 elements in soil samples by wavelength dispersive X-ray fluorescence spectrometry[J]. Soil and Fertilizer Sciences in China, 2023(6): 239−250. doi: 10.11838/sfsc.1673-6257.22283

    [41]

    王祎亚, 王毅民. 超细标准物质与超细样品分析研究进展[J]. 光谱学与光谱分析, 2021, 41(3): 696−703. doi: 10.3964/j.issn.1000-0593(2021)03-0696-08

    Wang Y Y, Wang Y M. Research progress of ultra-fine reference materials and ultra-fine samples[J]. Spectroscopy and Spectral Analysis, 2021, 41(3): 696−703. doi: 10.3964/j.issn.1000-0593(2021)03-0696-08

    [42]

    袁良经, 贾云海, 程大伟. X射线荧光光谱分析方法的检出限测量方法研究[J]. 光谱学与光谱分析, 2021, 43(2): 412−418. doi: 10.3964/j.issn.1000-0593(2023)02-0412-07

    Yuan L J, Jia Y H, Cheng D W. Study on methods of detection limit in XRF spectrometry[J]. Spectroscopy and Spectral Analysis, 2021, 43(2): 412−418. doi: 10.3964/j.issn.1000-0593(2023)02-0412-07

  • 加载中

(1)

(7)

计量
  • 文章访问数:  155
  • PDF下载数:  17
  • 施引文献:  0
出版历程
收稿日期:  2024-03-04
修回日期:  2024-08-04
录用日期:  2024-08-13
网络出版日期:  2024-09-25
刊出日期:  2025-03-20

目录