Determination of Major Elements in Small-Weight Soil and Sediment Samples by X-Ray Fluorescence Spectrometry with Pressed-Powder Pellets
-
摘要:
实现小样品量的X射线荧光光谱(XRF)分析测试是获取珍贵和稀缺样品中化学组成过程需要解决的关键技术问题。同时,应用XRF对标准物质进行均匀性检验在最小取样量上也存在争议。在目前地质分析样品(包括标准物质)大多为74μm(−200目)粒度水平下,XRF分析压片法的常规样品量为4g左右。本文利用0.1g样品量进行粉末压片,通过更换XRF试样盒面罩直径为12mm,缩小视野光栏直径为10mm,同时在优化制样条件和仪器测量条件基础上,利用32种不同类型、不同含量梯度的地球化学标准物质,建立了0.1g样品量条件下XRF粉末直接压片法测定土壤和沉积物样品中10种主量元素(SiO2、Al2O3、TFe2O3、MgO、CaO、Na2O、K2O、Mn、Ti和P)的分析方法,大幅度降低了样品量。0.1g样品量分析方法检出限为14μg/g~0.35%,精密度(RSD,n=12)小于3.9%。经对比分析,采用本文0.1g样品量方法分析不同含量标准物质的测定值均在标准值范围内,相对误差绝对值(|RE|)在0~15.7%,与4g样品量分析结果(|RE|在0.3%~28.3%)差异不大。采用本文方法0.1g样品量和常规方法4g样品量两种方法分析实际样品的测定结果基本吻合,验证了建立的0.1g样品量XRF分析方法可靠。
Abstract:The analysis of small-weight samples utilizing X-ray fluorescence spectrometry (XRF) poses a pivotal technical challenge in determining the chemical composition of valuable and scarce materials. Furthermore, the application of XRF to verify the homogeneity of reference materials has sparked debates regarding the minimum sample weight. At present, most of the geological samples (including reference material) are at the particle size of 74μm (−200 mesh) and the conventional sample weight is approximately 4g for XRF analysis with pressed-powder pellets. Here, 0.1g weight soil or sediment was used for pressed-powder pellet preparation. The diameter of the XRF spectrometry sample box mask was changed to 12mm, and the diameter of the field view light barrier was reduced to 10mm. Based on the previously optimized instrumental measurement conditions, we successfully established a 0.1g sample weight analytical method for the quantification of ten major elements (SiO2, Al2O3, TFe2O3, MgO, Cao, Na2O, K2O, Mn, Ti, and P) utilizing wavelength dispersive XRF, which significantly reduced the necessary sample weight. This method 1employed a diverse range of 32 geochemical reference materials, encompassing variou types and content gradients. The detection limit of the 0.1g sample weight analysis method was between 14μ/g and 0.35%, and the precisioniitalic>=12) was less than 3.9%. Through comparative analysis, the results of the erence materials were all within the standard value range, and the absolute value of relative error (|RE|) was between 0 and 15.7%. There was no significant difference with the 4g sample weight analysis results (|RE| ranged from 0.3% to 28.3%). The practical sample results determined by the method of 0.1g sample and the conventional method of 4g sample are consistent. The established XRF method for the 0.1g weight sample is reliable.
-
Key words:
- X-ray fluorescence spectrometry /
- pressed-powder pellets /
- sample weight /
- soil /
- sediment
-
-
表 1 样品量为0.1g仪器优化测定条件
Table 1. The optimum instrument parameters for 0.1g sampling weight
组分 分析线 电压(kV) 电流(mA) 准直器 晶体 探测器 PHA SiO2 Kα 30 120 S4 PET PC 110~320 Al2O3 Kα 30 120 S4 PET PC 90~320 TFe2O3 Kα 60 60 S2 LiF(200) SC 100~350 MgO Kα 30 120 S4 RX25 PC 110~330 CaO Kα 30 120 S4 LiF(200) PC 100~320 Na2O Kα 30 120 S4 RX25 PC 100~320 K2O Kα 30 120 S4 LiF(200) PC 110~300 Mn Kα 60 60 S2 LiF(200) SC 100~350 P Kα 30 120 S4 Ge PC 100~300 Ti Kα 40 90 S2 LiF(200) PC 100~320 表 2 样品量为4g仪器测定条件
Table 2. The instrument measurement parameters for 4g sampling weight
组分 分析线 衰减器 电压(kV) 电流(mA) 准直器 晶体 探测器 PHA SiO2 Kα 1/10 50 50 S4 PET PC 100~305 Al2O3 Kα 1/10 50 50 S4 PET PC 100~310 TFe2O3 Kα 1/10 50 50 S2 LiF(200) SC 100~350 MgO Kα 1/1 50 50 S4 RX25 PC 110~350 CaO Kα 1/10 50 50 S4 LiF(200) PC 100~320 Na2O Kα 1/1 50 50 S4 RX25 PC 130~270 K2O Kα 1/1 50 50 S4 LiF(200) PC 120~280 Mn Kα 1/1 50 50 S2 LiF(200) SC 110~345 P Kα 1/1 50 50 S4 Ge PC 155~270 Ti Kα 1/1 50 50 S2 LiF(200) SC 100~345 表 3 标准曲线绘制及校正情况
Table 3. Standard curve drawing and correction
组分 含量范围 基体校正 准确度(%) 相关系数 SiO2 32.69~88.89 Si,Al,Fe,Ca,Mg,K,P 1.10 0.9947 Al2O3 2.84~29.26 Si,Fe,Ca,Mg,K,Na,Mn,Ti,P 0.41 0.9966 TFe2O3 1.46~18.76 Al,Fe,Ca,Mg,K,Na,Ti,Mn,P 0.087 0.9997 MgO 0.12~3.40 Si,Fe,Al,Ca,Mg,K,Na,Mn,Ti,P 0.085 0.9964 CaO 0.10~8.27 Al,Fe,Ca,Mg,K,Na,Ti,Mn,P 0.11 0.9991 Na2O 0.039~8.99 Al,Fe,Ca,Mg,K,Na,Ti,Mn,P 0.064 0.9994 K2O 0.125~4.31 Al,Fe,Ca,Mg,K,Na,Ti,Mn,P 0.033 0.9992 Mn 218~1780 Al,Fe,Ca,Mg,K,Na,Ti,Mn,P 0.0019 0.9986 P 166~1520 Al,Fe,Ca,Mg,K,Na,Ti,Mn,P 0.0034 0.9943 Ti 127~20200 Al,Fe,Ca,Mg,K,Na,Ti,Mn,P 0.0100 0.9996 注:含量范围数据中,Mn、P、Ti含量单位为mg/kg,其余组分含量单位为%。 表 4 方法精密度
Table 4. Precision tests of the method
组分 RSD (%) 组分 RSD (%) GBW07376
(n=12)GBW07377
(n=12)GBW07376
(n=12)GBW07377
(n=12)SiO2 0.3 0.4 Na2O 1.8 2.7 Al2O3 1.0 1.2 K2O 0.7 1.0 TFe2O3 0.9 0.8 Mn 1.5 2.6 MgO 1.7 1.5 P 3.4 2.0 CaO 0.9 0.8 Ti 3.6 0.9 表 5 方法准确度
Table 5. Accuracy tests of the method
组分 GBW07425 GBW07428 标准值 本文方法测定值 常规方法测定值 标准值 本文方法测定值 常规方法测定值 0.1g样品量 |RE|(%) 4g样品量 |RE|(%) 0.1g样品量 |RE|(%) 4g样品量 |RE|(%) SiO2 69.42±0.28 69.64 0.3 66.26 4.6 64.51±0.36 61.70 4.4 60.72 5.9 Al2O3 13.14±0.06 13.27 1.0 12.35 6.0 14.43±0.13 15.16 5.1 14.23 1.4 TFe2O3 4.21±0.06 4.37 3.8 4.19 0.5 5.32±0.06 5.51 3.6 5.48 3.0 MgO 1.20±0.04 1.13 5.8 1.01 15.8 1.90±0.06 2.14 12.6 1.95 2.6 CaO 1.33±0.03 1.44 8.3 1.32 0.8 2.45±0.05 2.69 9.8 2.52 2.9 Na2O 1.98±0.07 1.98 0 1.74 12.1 1.59±0.07 1.34 15.7 1.14 28.3 K2O 2.70±0.04 2.76 2.2 2.69 0.4 2.46±0.07 2.54 3.3 2.56 4.1 Mn 572±14 603 5.4 556 2.8 688±15 715 3.9 676 1.7 P 483±24 485 0.4 498 3.1 730±28 724 0.8 701 4.0 Ti 3920±60 4071 3.9 3802 3.0 4060±130 4234 4.3 4072 0.3 组分 GBW07388 GBW07378 标准值 本文方法测定值 常规方法测定值 标准值 本文方法测定值 常规方法测定值 0.1g样品量 |RE|(%) 4g样品量 |RE|(%) 0.1g样品量 |RE|(%) 4g样品量 |RE|(%) SiO2 67.33±0.36 67.34 0 64.43 4.3 68.62±0.55 68.12 0.7 66.92 2.5 Al2O3 14.49±0.17 14.35 1.0 14.04 3.1 13.21~13.38(13.31) 13.00 2.3 12.00 9.8 TFe2O3 5.52±0.07 5.78 4.7 5.62 1.8 4.24±0.13 4.33 2.1 4.19 1.2 MgO 1.34±0.11 1.38 3.0 1.33 0.7 1.41±0.05 1.38 2.1 1.16 17.7 CaO 1.09±0.05 1.15 5.5 1.10 0.9 2.94±0.10 2.74 6.8 2.75 6.5 Na2O 1.26±0.07 1.24 1.6 1.02 19.0 2.48±0.09 2.66 7.3 2.44 1.6 K2O 2.07±0.08 2.06 0.5 2.06 0.5 2.48±0.10 2.5 0.8 2.42 2.4 Mn 841±15 878 4.4 812 3.4 960±24 990 3.1 950 1.0 P 287±32 305 6.3 296 3.1 499±15 485 2.8 493 1.2 Ti 4630±70 4809 3.9 4589 0.9 3020±120 3018 0.1 2943 2.5 注:Mn、P、Ti含量单位为mg/kg,其他组分含量单位为%,Al2O3测定值数据为95%置信区间的不确定度范围,括号内的数据为标准值的中位值。
表 6 样品量为0.1g和4g分析结果对比
Table 6. Comparison of analysis results between 0.1g and 4g samples
组分 实际样品1测定值 实际样品2测定值 0.1g样品量 4g样品量 0.1g样品量 4g样品量 SiO2 72.8 67.88 71.88 70.31 Al2O3 8.73 8.59 11.75 11.51 TFe2O3 3.32 3.54 3.52 3.42 MgO 1.17 1.04 0.75 0.67 CaO 4.72 4.98 2.86 2.99 Na2O 0.49 0.65 2.26 2.16 K2O 1.75 1.83 3.14 3.18 Mn 648 707 774 756 P 361 385 388 428 Ti 2535 2909 2292 2345 注:Mn、P、Ti含量单位为mg/kg,其他组分含量单位为%。 表 7 方法检出限
Table 7. Detection limits of elements
方法参数 GBW07120 GBW07730 SiO2 Al2O3 TFe2O3 Na2O Mn P Ti MgO CaO K2O s 0.024 0.0049 0.005 0.01 4.6 4.6 25 0.116 0.003 0.0005 检出限 0.07 0.01 0.02 0.03 14 14 75 0.35 0.01 0.002 注:Mn、P、Ti含量单位为μg/g,其他组分含量单位为%。 -
[1] Krishna A K, Khanna T C, Mohan K R. Rapid quantitative determination of major and trace elements in silicate rocks and soils employing fused glass discs using wavelength dispersive X-ray fluorescence spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2016, 122: 165−171. doi: 10.1016/j.sab.2016.07.004
[2] 赵红坤, 郝亚波, 田有国, 等. 熔融制样-X射线荧光光谱法测定小取样量地球化学样品中的主量元素[J]. 物探与化探, 2020, 44(4): 778−783. doi: 10.11720/wtyht.2020.0042
Zhao H K, Hao Y B, Tian Y G, et al. Melting sample preparation-X-ray fluorescence spectrometry was used to measure a small amount of soil certified reference material[J]. Geophysical and Geochemical Exploration, 2020, 44(4): 778−783. doi: 10.11720/wtyht.2020.0042
[3] 曾小家, 李世杰, 李雄耀, 等. 月壤主量元素无损分析方案预研究[J]. 矿物岩石地球化学通报, 2015, 34(6): 1282−1286. doi: 10.3969/j.issn.1007-2802.2015.06.021
Zeng X J, Li S J, Li X Y, et al. Method for nondestructive measurement of major elements of lunar soil samples[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(6): 1282−1286. doi: 10.3969/j.issn.1007-2802.2015.06.021
[4] Ichikawa S, Nakamura T. X-ray fluorescence analysis with micro glass beads using milligram-scale siliceous samples for archeology and geochemistry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2014, 96: 40−50. doi: 10.1016/j.sab.2014.04.002
[5] 金秉慧. 地质标准物质十年回顾[J]. 岩矿测试, 2003, 22(3): 188−200.
Jin B H. Geological certified reference materials: A review since 1992[J]. Rock and Mineral Analysis, 2003, 22(3): 188−200.
[6] 王毅民, 高玉淑, 王晓红. 中国地质标准物质研制和标准方法制定的成果与思考[J]. 岩矿测试, 2006, 25(1): 55−63.
Wang Y M, Gao Y S, Wang X H. A review on study of geochemical reference materials and reference methods in China[J]. Rock and Mineral Analysis, 2006, 25(1): 55−63.
[7] 王毅民, 王晓红, 何红蓼, 等. 地质标准物质的最小取样量问题[J]. 地质通报, 2009, 28(6): 804−807.
Wang Y M, Wang X H, He H L, et al. The minimum sampling mass of geostandards reference materials[J]. Geological Bulletin of China, 2009, 28(6): 804−807.
[8] 王晓红, 王毅民, 高玉淑, 等. 地质标准物质均匀性检验方法评介与探讨[J]. 岩矿测试, 2010, 29(6): 735−741.
Wang X H, Wang Y M, Gao Y S, et al. A review on homogeneity testing techniques for geochemical reference materials in China[J]. Rock and Mineral Analysis, 2010, 29(6): 735−741.
[9] 赵红坤, 于阗, 肖志博, 等. 粉末压片-X射线荧光光谱法在地球化学标准物质均匀性检验中的应用研究[J]. 光谱学与光谱分析, 2021, 41(3): 755−762. doi: 10.3964/j.issn.1000-0593(2021)03-0755-08
Zhao H K, Yu T, Xiao Z B, et al. Application of powder tableting-X-ray fluorescence spectroscopy in the uniformity test of geochemical reference standards[J]. Spectroscopy and Spectral Analysis, 2021, 41(3): 755−762. doi: 10.3964/j.issn.1000-0593(2021)03-0755-08
[10] 王毅民, 邓赛文, 李松, 等. X射线荧光光谱在地球化学调查中的应用评介[J]. 冶金分析, 2020, 40(10): 50−62. doi: 10.13228/j.boyuan.issn1000-7571.011157
Wang Y M, Deng S W, Li S, et al. Review on the application of X-ray fluorescence spectrometry in geochemical survey[J]. Metallurgical Analysis, 2020, 40(10): 50−62. doi: 10.13228/j.boyuan.issn1000-7571.011157
[11] 白金峰, 杜雪苗, 郭心玮, 等. 应用地球化学样品分析测试技术进展[J]. 物探化探计算技术, 2022, 44(6): 842−853. doi: 10.3969/j.issn.1001-1749.2022.06.15
Bai J F, Du X M, Guo X W, et al. Advancement of sample analysis and testing technologies in applied geochemistry[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2022, 44(6): 842−853. doi: 10.3969/j.issn.1001-1749.2022.06.15
[12] 刘玉纯, 林庆文, 马玲. X射线荧光光谱技术在地质分析中的应用及发展动态[J]. 化学分析计量, 2019, 28(4): 125−131. doi: 10.3969/j.issn.1008-6145.2019.04.030
Liu Y C, Lin Q W, Ma L. Applications and development of X-ray fluorescence spectrometers in geological analysis[J]. Chemical Analysis and Meterage, 2019, 28(4): 125−131. doi: 10.3969/j.issn.1008-6145.2019.04.030
[13] 李小莉, 王毅民, 邓赛文, 等. 中国X射线荧光光谱分析的地学应用60年[J]. 光谱学与光谱分析, 2023, 43(10): 2989−2998. doi: 10.3964/j.issn1000-0593(2023)10-2989-10
Li X L, Wang Y M, Deng S W, et al. Application of X-ray fluorescence spectrometry in geological and mineral analysis for 60 years[J]. Spectroscopy and Spectral Analysis, 2023, 43(10): 2989−2998. doi: 10.3964/j.issn1000-0593(2023)10-2989-10
[14] 李小莉, 王毅民, 高新华, 等. 1960—2020年中国X射线荧光光谱分析评述文献评介[J]. 理化检验(化学分册), 2023, 59(10): 1231−1240. doi: 10.11973/lhjy-hx202310024
Li X L, Wang Y M, Gao X H, et al. Evaluation of review literatures of X-ray fluorescence spectrometry analysis in China from 1960 to 2020[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2023, 59(10): 1231−1240. doi: 10.11973/lhjy-hx202310024
[15] 谢学锦, 任天祥, 奚小环, 等. 中国区域化探全国扫面计划卅年[J]. 地球学报, 2009, 30(6): 700−716.
Xie X J, Ren T X, Xi X H, et al. The implementation of the regional geochemistry-national reconnaissance program (RGNR) in China in the past thirty years[J]. Acta Geoscientica Sinica, 2009, 30(6): 700−716.
[16] 王学求. 勘查地球化学近十年进展[J]. 矿物岩石地球化学通报, 2013, 32(2): 190−197.
Wang X Q. A decade of exploration geochemistry[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(2): 190−197.
[17] 王学求. 勘查地球化学80年来重大事件回顾[J]. 中国地质, 2013, 40(1): 322−330.
Wang X Q. Landmark events of exploration geochemistry in the past 80 years[J]. Geology in China, 2013, 40(1): 322−330.
[18] 王学求. 全球地球化学基准: 了解过去, 预测未来[J]. 地学前缘, 2012, 19(3): 7−18.
Wang X Q. Global geochemical baselines: Understanding the past and predicting the future[J]. Earth Science Frontiers, 2012, 19(3): 7−18.
[19] 王学求, 周建, 徐善法, 等. 全国地球化学基准网建立与土壤地球化学基准值特征[J]. 中国地质, 2016, 43(5): 1469−1480.
Wang X Q, Zhou J, Xu S F, et al. China soil geochemical baselines networks: Data characteristics[J]. Geology in China, 2016, 43(5): 1469−1480.
[20] 王毅民, 张学华, 邓赛文, 等. X射线荧光光谱在海洋地质及矿产资源调查分析中的应用评介[J]. 冶金分析, 2020, 40(10): 63−75. doi: 10.13228/j.boyuan.issn1000-7571.011127
Wang Y M, Zhang X H, Deng S W, et al. Review on the application of X-ray fluorescence spectrometry in marine geology and mineral resources survey[J]. Metallurgical Analysis, 2020, 40(10): 63−75. doi: 10.13228/j.boyuan.issn1000-7571.011127
[21] 王毅民, 邓赛文, 王祎亚, 等. X射线荧光光谱在矿石分析中的应用评介——总论[J]. 冶金分析, 2020, 40(10): 32−49. doi: 10.13228/j.boyuan.issn1000-7571.011164
Wang Y M, Deng S W, Wang Y Y, et al. Review on the application of X-ray fluorescence spectrometry in ores’ analysis[J]. Metallurgical Analysis, 2020, 40(10): 32−49. doi: 10.13228/j.boyuan.issn1000-7571.011164
[22] 邓赛文, 王毅民, 孙晓飞, 等. X射线荧光光谱技术在铁矿石分析中的应用文献评介[J]. 冶金分析, 2019, 39(11): 30−49. doi: 10.13228/j.boyuan.issn1000-7571.010901
Deng S W, Wang Y M, Sun X F, et al. Literature review on application of X-ray fluorescence spectrometry in analysis of iron ores[J]. Metallurgical Analysis, 2019, 39(11): 30−49. doi: 10.13228/j.boyuan.issn1000-7571.010901
[23] 李小莉, 邓赛文, 王毅民, 等. X射线荧光光谱在碳酸盐类矿石分析中的应用文献评介[J]. 冶金分析, 2022, 42(3): 33−46. doi: 10.13228/j.boyuan.issn1000-7571.011552
Li X L, Deng S W, Wang Y M, et al. Review on application of X-ray fluorescence spectrometry in carbonate ore analysis[J]. Metallurgical Analysis, 2022, 42(3): 33−46. doi: 10.13228/j.boyuan.issn1000-7571.011552
[24] 李松, 邓赛文, 王毅民, 等. X射线荧光光谱在锰矿石分析中的应用文献评介[J]. 冶金分析, 2021, 41(3): 18−26. doi: 10.13228/j.boyuan.issn1000-7571.011289
Li S, Deng S W, Wang Y M, et al. Review on the application of X-ray fluorescence spectrometry in analysis of manganese ore[J]. Metallurgical Analysis, 2021, 41(3): 18−26. doi: 10.13228/j.boyuan.issn1000-7571.011289
[25] 殷绍泉, 邓赛文, 王毅民, 等. X射线荧光光谱在铜矿石分析中的应用文献评介[J]. 冶金分析, 2019, 39(7): 43−52. doi: 10.13228/j.boyuan.issn1000-7571.010634
Yin S Q, Deng S W, Wang Y M, et al. Review on the application of X-ray fluorescence spectrometry in copper ore analysis[J]. Metallurgical Analysis, 2019, 39(7): 43−52. doi: 10.13228/j.boyuan.issn1000-7571.010634
[26] 李松, 邓赛文, 王毅民, 等. X射线荧光光谱技术在铬铁矿石分析中的应用文献评介[J]. 冶金分析, 2019, 39(8): 67−75. doi: 10.13228/j.boyuan.issn1000-7571.010698
Li S, Deng S W, Wang Y M, et al. Review on the application of X-ray fluorescence spectrometry in analysis of chromite ore[J]. Metallurgical Analysis, 2019, 39(8): 67−75. doi: 10.13228/j.boyuan.issn1000-7571.010698
[27] 邓赛文, 王祎亚, 王毅民. 中国磷矿石分析文献评介[J]. 岩矿测试, 2011, 30(3): 384−390.
Deng S W, Wang Y Y, Wang Y M. Review on literatures of phosphate ores analysis in China[J]. Rock and Mineral Analysis, 2011, 30(3): 384−390.
[28] 王祎亚, 邓赛文, 王毅民, 等. X射线荧光光谱在痕量和超轻元素分析中的应用评介[J]. 冶金分析, 2020, 40(10): 12−31. doi: 10.13228/j.boyuan.issn1000-7571.011156
Wang Y Y, Deng S W, Wang Y M, et al. Review on the application of X-ray fluorescence spectrometry in trace and ultra-light elements analysis[J]. Metallurgical Analysis, 2020, 40(10): 12−31. doi: 10.13228/j.boyuan.issn1000-7571.011156
[29] 刘建坤, 郑荣华, 骆宏玉, 等. 粉末压片-X射线荧光光谱法测定矿石中高含量铷[J]. 理化检验(化学分册), 2014, 50(11): 1451−1452.
Liu J K, Zheng R H, Luo H Y, et al. Determination of high content rubidium in ores by X-ray fluorescence spectrometry with pressed powder pellet[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2014, 50(11): 1451−1452.
[30] 曾江萍, 郑智慷, 张楠, 等. 粉末压片制样-X射线荧光光谱法测定锂云母中铷、铯及主量组分[J]. 冶金分析, 2019, 39(10): 73−77. doi: 10.13228/j.boyuan.issn1000-7571.010714
Zeng J P, Zheng Z K, Zhang N, et al. Determination of rubidium, cesium and major components in lithium mica by X-ray fluorescence spectrometry with pressed powder pellet[J]. Metallurgical Analysis, 2019, 39(10): 73−77. doi: 10.13228/j.boyuan.issn1000-7571.010714
[31] 霍红英, 邹敏, 张天益, 等. 粉末压片-能量色散X射线荧光光谱法测定钛精矿中6种组分[J]. 冶金分析, 2019, 39(9): 26−31. doi: 10.13228/j.boyuan.issn1000-7571.010629
Huo H Y, Zou M, Zhang T Y, et al. Determination of six components in titanium concentrate by energy dispersive X-ray fluorescence spectrometry with pressed powder pellet[J]. Metallurgical Analysis, 2019, 39(9): 26−31. doi: 10.13228/j.boyuan.issn1000-7571.010629
[32] 修凤凤, 樊勇, 李俊雨, 等. 粉末压片-波长色散X射线荧光光谱法测定金矿型构造叠加晕样品中18种次量元素[J]. 岩矿测试, 2018, 37(5): 526−532. doi: 10.15898/j.cnki.11-2131/td.201704170061
Xiu F F, Fan Y, Li J Y, et al. Determination of 18 minor elements in the structural superimposed halo samples from gold deposits by wavelength dispersive X-ray fluorescence spectrometry with pressed-powder pellets[J]. Rock and Mineral Analysis, 2018, 37(5): 526−532. doi: 10.15898/j.cnki.11-2131/td.201704170061
[33] 吕胜男, 卢兵, 赵文志, 等. X射线荧光光谱法同时测定土壤和水系沉积物中23种主次痕量组分[J]. 理化检验(化学分册), 2023, 59(7): 764−770. doi: 10.11973/lhjy-hx202307004
Lyu S N, Lu B, Zhao W Z, et al. Simultaneous determination of 23 major, minor and trace components in soil and stream sediment by X-ray fluorescence spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2023, 59(7): 764−770. doi: 10.11973/lhjy-hx202307004
[34] 钟坚海, 叶华欣, 李泳涛, 等. 压片制样-波长色散X射线荧光光谱法测定土壤和沉积物中主、次及微量元素[J]. 中国无机分析化学, 2022, 12(6): 34−39. doi: 10.3969/j.issn.2095-1035.2022.06.006
Zhong J H, Ye H X, Li Y T, et al. Determination of major, minor and micro elements in soils and sediments by wavelength dispersive X-ray fluorescence spectrometry with pressed powder pellet[J]. Chinese Journal of Inorganic Analytical Chemistry, 2022, 12(6): 34−39. doi: 10.3969/j.issn.2095-1035.2022.06.006
[35] 杏艳, 田渭花, 刘锦华, 等. 单波长激发能量色散X射线荧光光谱法测定土壤和沉积物中19种元素[J]. 环境化学, 2022, 41(10): 3182−3195. doi: 10.7524/j.issn.0254-6108.2022031003
Xing Y, Tian W H, Liu J H, et al. Determination of 19 elements in soils and sediments by single-wavelength excitation energy dispersive X-ray fluorescence spectrometry[J]. Environmental Chemistry, 2022, 41(10): 3182−3195. doi: 10.7524/j.issn.0254-6108.2022031003
[36] 夏传波, 钱惠芬, 田兴磊, 等. X射线荧光光谱法测定新研制土壤标准物质中11种元素的含量[J]. 理化检验(化学分册), 2022, 58(7): 811−817. doi: 10.11973/lhjy-hx202207013
Xia C B, Qian H F, Tian X L, et al. Determination of 11 elements in newly developed soil reference materials by X-ray fluorescence spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2022, 58(7): 811−817. doi: 10.11973/lhjy-hx202207013
[37] 李强, 张学华, 黄雪华, 等. 高压粉末制样-X射线荧光光谱法测定海洋沉积物中28种组分[J]. 冶金分析, 2022, 42(6): 9−17. doi: 10.13228/j.boyuan.issn1000-7571.011614
Li Q, Zhang X H, Huang X H, et al. Determination of twenty-eight components in marine sediment by X-ray fluorescence spectrometry with high-pressure powder pelleting preparation[J]. Metallurgical Analysis, 2022, 42(6): 9−17. doi: 10.13228/j.boyuan.issn1000-7571.011614
[38] 杨立坤, 毛雪飞, 郑磊, 等. 单波长激发-能量色散X射线荧光光谱法测定土壤全量硅、铝、铁、钾、钠、钙、镁、锰、磷、钛、硫[J]. 中国无机分析化学, 2023, 13(12): 1429−1436. doi: 10.3969/j.issn.2095-1035.2023.12.023
Yang L K, Mao X F, Zheng L, et al. Determination of total silicon, aluminum, iron, potassium, sodium, calcium, magnesium, manganese, phosphorus, titanium and sulfur in soil by single wavelength excitation-energy dispersive X-ray fluorescence spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(12): 1429−1436. doi: 10.3969/j.issn.2095-1035.2023.12.023
[39] Xue D S, Su B X, Zhang D P, et al. Quantitative verification of 1∶100 diluted fused glass beads for X-ray fluorescence analysis of geological specimens[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(12): 2826−2833. doi: 10.1039/d0ja00273a
[40] 耿梅梅, 张丽萍, 王久荣, 等. 样品粒径、制样方法对波长色散X射线荧光光谱法测定土壤样品中19种元素的影响[J]. 中国土壤与肥料, 2023(6): 239−250. doi: 10.11838/sfsc.1673-6257.22283
Geng M M, Zhang L P, Wang J R, et al. Effects of sample particle size and preparation on the determination of 19 elements in soil samples by wavelength dispersive X-ray fluorescence spectrometry[J]. Soil and Fertilizer Sciences in China, 2023(6): 239−250. doi: 10.11838/sfsc.1673-6257.22283
[41] 王祎亚, 王毅民. 超细标准物质与超细样品分析研究进展[J]. 光谱学与光谱分析, 2021, 41(3): 696−703. doi: 10.3964/j.issn.1000-0593(2021)03-0696-08
Wang Y Y, Wang Y M. Research progress of ultra-fine reference materials and ultra-fine samples[J]. Spectroscopy and Spectral Analysis, 2021, 41(3): 696−703. doi: 10.3964/j.issn.1000-0593(2021)03-0696-08
[42] 袁良经, 贾云海, 程大伟. X射线荧光光谱分析方法的检出限测量方法研究[J]. 光谱学与光谱分析, 2021, 43(2): 412−418. doi: 10.3964/j.issn.1000-0593(2023)02-0412-07
Yuan L J, Jia Y H, Cheng D W. Study on methods of detection limit in XRF spectrometry[J]. Spectroscopy and Spectral Analysis, 2021, 43(2): 412−418. doi: 10.3964/j.issn.1000-0593(2023)02-0412-07
-