中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

微波辅助提取GC-MS/MS测定复杂基质底泥中德克隆类化合物及处理效果初探

朱帅, 沈亚婷, 潘萌, 贾静, 杨志鹏, 曹建华, 王玉. 微波辅助提取GC-MS/MS测定复杂基质底泥中德克隆类化合物及处理效果初探[J]. 岩矿测试, 2025, 44(2): 290-304. doi: 10.15898/j.ykcs.202409190197
引用本文: 朱帅, 沈亚婷, 潘萌, 贾静, 杨志鹏, 曹建华, 王玉. 微波辅助提取GC-MS/MS测定复杂基质底泥中德克隆类化合物及处理效果初探[J]. 岩矿测试, 2025, 44(2): 290-304. doi: 10.15898/j.ykcs.202409190197
ZHU Shuai, SHEN Yating, PAN Meng, JIA Jing, YANG Zhipeng, CAO Jianhua, WANG Yu. Determination of Dechlorane Plus Compounds in Complex Matrix Sludge by GC-MS/MS with Microwave-Assisted Extraction and Evaluation of Treatment Efficiency[J]. Rock and Mineral Analysis, 2025, 44(2): 290-304. doi: 10.15898/j.ykcs.202409190197
Citation: ZHU Shuai, SHEN Yating, PAN Meng, JIA Jing, YANG Zhipeng, CAO Jianhua, WANG Yu. Determination of Dechlorane Plus Compounds in Complex Matrix Sludge by GC-MS/MS with Microwave-Assisted Extraction and Evaluation of Treatment Efficiency[J]. Rock and Mineral Analysis, 2025, 44(2): 290-304. doi: 10.15898/j.ykcs.202409190197

微波辅助提取GC-MS/MS测定复杂基质底泥中德克隆类化合物及处理效果初探

  • 基金项目: 国家重点研发计划项目(2022YFC3700803);中国地质科学院基本科研业务费项目(CSJ-2023-03);中国地质调查局地质调查项目(DD20230454)
详细信息
    作者简介: 朱帅,硕士,副研究员,主要从事有机污染物分析方法与环境行为研究。E-mail:zhu15131215153@126.com
  • 中图分类号: O657.63;X832

Determination of Dechlorane Plus Compounds in Complex Matrix Sludge by GC-MS/MS with Microwave-Assisted Extraction and Evaluation of Treatment Efficiency

  • 德克隆类物质在污泥样品中以痕量水平(ng/g级)存在,加之污泥基质复杂,对污泥中德克隆类化合物的分析带来极大挑战。鉴于此,本文建立了微波辅助提取与气相色谱-三重四极杆串联质谱(GC-MS/MS)相结合,测定污水处理厂底泥中德克隆类化合物的分析方法。底泥样品采用微波辅助提取在线净化的方法,以丙酮-正己烷(1∶1,V/V)作为提取溶剂,在120℃温度和1500W功率条件下,该方法能够高效地从基质复杂的底泥样品中提取出德克隆类化合物,提取回收率超过80%。样品提取后,利用石墨化碳黑(GCB)和乙二胺基-N-丙基(PSA)固相萃取柱进一步净化,可有效地去除色素、脂类和非极性干扰物,减少基质干扰。借助质谱多反应监测(MRM)模式,针对目标化合物的特定离子对进行选择性监测,排除其他干扰离子的影响,从而实现了对德克隆类化合物的准确定量。该方法在5~400ng/mL浓度范围内线性关系良好,相关系数(r)不小于0.998,检出限为0.017~0.040ng/g。在低、中、高三个浓度水平底泥基质中,德克隆类化合物的平均回收率分别为79.8%~99.5%、86.2%~104.8%、91.2%~106.1%,相对标准偏差(RSD)<7%。将该方法应用于实际底泥样品的检测,在11个污水处理厂底泥中均检出德克隆类化合物,且含量较高(31.4~195.6ng/g)。底泥中顺式德克隆(syn-DP)异构体比例的平均值fsyn=0.27,低于德克隆(DP)产品的fsyn值,这是由于底泥对反式德克隆(anti-DP)的吸附性更强,或底泥中的顺式德克隆(syn-DP)优先发生了生物降解。初步比较了11个污水处理厂采用不同的污水处理工艺处理底泥中德克隆化合物的效果,与活性污泥法水处理相比,采用A2/O工艺处理的德克隆类化合物的浓度显著降低,fsyn值显著增高,但其影响机制仍待深入探究。

  • 加载中
  • 图 1  德克隆类化合物的色谱图

    Figure 1. 

    图 2  不同样品制备方法条件下德克隆类化合物提取回收率

    Figure 2. 

    图 3  不同提取溶剂条件下德克隆类化合物提取回收率

    Figure 3. 

    图 4  不同提取温度条件下德克隆类化合物提取回收率

    Figure 4. 

    图 5  不同提取功率条件下德克隆类化合物提取回收率

    Figure 5. 

    图 6  不同净化小柱条件下德克隆类化合物提取回收率

    Figure 6. 

    图 7  德克隆类化合物在不同污水处理厂底泥中的分布特征

    Figure 7. 

    图 8  不同水处理工艺处理的德克隆类化合物浓度(a)和syn-DP异构体比例(b)箱式图

    Figure 8. 

    表 1  德克隆类化合物的质谱分析参数

    Table 1.  Mass spectrometric analysis parameters of dechlorane plus and related compounds

    序号
    No.
    德克隆类化合物
    Dechlorane plus and
    related compounds
    保留时间
    Retention time
    (min)
    定量离子对
    Quantitative ion pair
    定性离子对
    Qualitative ion pair
    m/zCE(eV)m/zCE(eV)
    1Mirex8.753272.00>236.8015274.00>238.8015
    2Dec60210.028272.00>236.8018274.00>238.9018
    313C12-PCB19810.217476.00>405.7039474.00>403.7024
    413C12-PCB20910.678510.00>439.6027512.00>439.9033
    5Dec60312.90263.00>192.9030261.00>191.0033
    6Dec60413.258420.00>259.8030441.00>281.0036
    7anti-Cl10-DP13.796204.00>168.9018202.00>166.9021
    8syn-DP14.775272.00>236.8015274.00>238.9015
    913C10-syn-DP14.77277.00>241.8018278.85>244.0015
    10anti-Cl11-DP15.027238.00>202.9018240.00>204.9018
    11anti-DP15.262272.00>236.9015274.00>238.8015
    1213C10-anti-DP15.259277.00>241.9018278.85>243.9015
    下载: 导出CSV

    表 2  德克隆类化合物的线性方程、相关系数、检出限和定量限

    Table 2.  Linear equations, correlation coefficients, detection limits and quantitation limits of dechlorane plus and related compounds

    德克隆类化合物
    Dechlorane plus and related compounds
    线性方程
    Linear equation
    相关系数
    Correlation coefficient (r)
    检出限
    Detection limit (ng/g)
    Mirex y=0.2137x−2.3210 0.9995 0.024
    Dec602 y=0.1604x−1.8138 0.9998 0.040
    Dec603 y=0.0430x−0.7378 0.9988 0.024
    Dec604 y=0.0024x+0.0073 0.9995 0.038
    anti-Cl10DP y=0.1061x+1.8584 0.9993 0.017
    syn-DP y=0.0190x+0.1920 0.9999 0.018
    anti-Cl11DP y=0.1374x+3.1074 0.9987 0.040
    anti-DP y=0.0491x+0.7488 0.9995 0.039
    下载: 导出CSV

    表 3  德克隆类化合物的加标回收率和精密度

    Table 3.  Average recoveries and RSD of dechlorane plus and related compounds

    德克隆类化合物
    Dechlorane plus and
    related compounds
    添加浓度2ng/g
    Spiked concentration of 2ng/g
    添加浓度10ng/g
    Spiked concentration of 10ng/g
    添加浓度30ng/g
    Spiked concentration of 30ng/g
    平均回收率
    Average recovery (%)
    RSD
    (%)
    平均回收率
    Average recovery (%)
    RSD
    (%)
    平均回收率
    Average recovery (%)
    RSD
    (%)
    Mirex 89.8 6.29 93.3 5.58 106.0 2.79
    Dec602 79.8 6.60 98.6 5.39 102.4 2.28
    Dec603 92.5 2.28 104.8 3.73 91.2 3.70
    Dec604 83.5 4.60 87.7 4.79 91.3 5.87
    anti-Cl10DP 99.5 6.91 94.2 2.48 106.1 1.17
    syn-DP 82.8 3.16 86.2 3.10 95.7 1.62
    anti-Cl11DP 99.5 3.03 91.9 2.51 103.3 1.95
    anti-DP 91.7 2.39 102.4 2.24 95.8 1.48
    13C12-PCB209 88.3 4.12 102.3 3.28 100.8 2.97
    13C10-syn-DP 94.8 3.56 92.2 3.16 85.9 2.31
    13C10-anti-DP 89.5 2.89 94.9 2.39 91.4 3.56
    下载: 导出CSV

    表 4  本文分析方法与相关文献分析方法的比较

    Table 4.  Comparison of the analytical methods in this paper and those in related literatures

    目标物
    Target compounds
    样品基质
    Sample matrix
    样品前处理方法
    Sample pretreatment method
    分析仪器Analytical instrument 方法回收率
    Recovery of method
    方法检出限
    Detection limit of method
    参考文献
    Reference
    syn-DP,anti-DP,
    Dec602,Dec603,
    Dec604
    干燥沉积物
    Dry sediment
    索氏提取,多层硅胶柱净化
    Soxhlet extraction,multi-layer silica
    gel column purification
    GC-HRMS 61%~106% 0.5~1pg/g 33
    Mirex,syn-DP,anti-DP,
    Dec602,Dec603,Dec604
    干燥沉积物和土壤
    Dry sediment and soil
    加压液相萃取,镁铝层状双金属
    氢氧化物净化
    Pressure liquid phase extraction,Mg-Al
    layered double oxides purification
    GC-MS 90.3%~99.8% 0.01~0.67ng/g 34
    Mirex,syn-DP,anti-DP,
    Dec602,Dec603,
    Dec604,anti-Cl10DP,
    anti-Cl11DP
    新鲜底泥
    Fresh sludge
    微波辅助提取,GCB/PSA固相萃取柱净化
    Microwave assisted extraction,
    GCB/PSA solid phase extraction
    column purification
    GC-MS/MS 79.8%~106.0% 0.017~0.040ng/g 本文研究
    This study
    下载: 导出CSV
  • [1]

    Schuster J K, Harner T S, Verko E. Dechlorane plus in the global atmosphere[J]. Environmental Science & Technology Letters, 2021, 8(1): 39−45. doi: 10.1021/acs.estlett.0c00758

    [2]

    Xian Q, Siddique S, Li T, et al. Sources and environ-mental behavior of dechlorane plus—A review[J]. Environment International, 2011, 37(7): 1273−1284.

    [3]

    Hoh E, Zhuhites R A. Dechlorane plus, a chlorinated flame retardant, in the Great Lakes[J]. Environmental Science & Technology, 2006, 40(4): 1184−1189. doi: 10.1021/es051911h

    [4]

    Chang R W, Wang Q, Ban X Y, et al. Aging affects isomer-specific occurrence of dechlorane plus in soil profiles: A case study in a geographically isolated landfill from the Tibetan Plateau[J]. Science of the Total Environment, 2023, 878: 163119. doi: 10.1016/j.scitotenv.2023.163119

    [5]

    Möller A, Xie Z, Sturm R, et al. Large-scale distribution of dechlorane plus in air and seawater from the Arctic to Antarctica[J]. Environmental Science & Technology, 2010, 44(23): 8977−8982. doi: 10.1021/es103047n

    [6]

    de la Torre A, Sverko E, Alaee M, et al. Concentrations and sources of dechlorane plus in sewage sludge[J]. Chemosphere, 2011, 82(5): 692−697. doi: 10.1016/j.chemosphere.2010.10.097

    [7]

    Bao J S, Ren H M, Han J L, et al. Levels, tissue distribution and isomer stereoselectivity of dechlorane plus in humans: A critical review[J]. Science of the Total Environment, 2023, 903: 166156. doi: 10.1016/j.scitotenv.2023.166156

    [8]

    Peshdary V, Styles G, Rigden M, et al. Exposure to low doses of dechlorane plus promotes adipose tissue dysfunction and glucose intolerance in male mice[J]. Endocrinology, 2020, 161(7): 1−15. doi: 10.1210/endocr/bqaa096

    [9]

    Zhu J, Zhao L X, Guo L H. Dechloranes exhibit binding potency and activity to thyroid hormone receptors[J]. Journal of Environmental Sciences, 2022, 112: 16−24. doi: 10.1016/j.jes.2021.04.030

    [10]

    Ochs C, Garrison K, Saxena P, et al. Contamination of aquatic ecosystems by persistent organic pollutants (POPs) originating from landfills in Canada and the United States: A rapid scoping review[J]. Science of the Total Environment, 2024, 924: 171490. doi: 10.1016/j.scitotenv.2024.171490

    [11]

    Menger F, Ahrens L, Wiberg K, et al. Suspect screening based on market data of polar halogenated micropollutants in river water affected by wastewater[J]. Journal of Hazardous Materials, 2021, 401: 123377. doi: 10.1016/j.jhazmat.2020.123377

    [12]

    Košnář Z, Mercl F, Pierdonà L, et al. Concentration of the main persistent organic pollutants in sewage sludge in relation to wastewater treatment plant parameters and sludge stabilisation[J]. Environmental Pollution, 2023, 333: 122060. doi: 10.1016/j.envpol.2023.122060

    [13]

    Brazeau A L, Pena-Abaurrea M, Shen L, et al. Dechlorinated analogues of dechlorane plus[J]. Environmental Science & Technology, 2018, 52(10): 5619−5624. doi: 10.1021/acs.est.8b00545

    [14]

    Martín-Pozo L, de Alarcón-Gómez B, Rodríguez-Gómez R, et al. Analytical methods for the determination of emerging contaminants in sewage sludge samples: A review[J]. Talanta, 2019, 192: 508−533. doi: 10.1016/j.talanta.2018.09.056

    [15]

    郭晓辰, 饶竹, 李晓洁, 等. 加速溶剂萃取/气相色谱-三重四极杆质谱测定土壤中8种得克隆类化合物[J]. 分析测试学报, 2019, 38(2): 141−147. doi: 10.3969/j.issn.1004-4957.2019.02.003

    Guo X C, Rao Z, Li X J, et al. Determination of 8 kinds of super trace dechloranes in soil by gas chromatography-triple quadrupole mass spectrometry with accelerated solvent extraction[J]. Journal of Instrumental Analysis, 2019, 38(2): 141−147. doi: 10.3969/j.issn.1004-4957.2019.02.003

    [16]

    Benedetti B, Majone M, Cavaliere C, et al. Determination of multi-class emerging contaminants in sludge and recovery materials from waste water treatment plants: Development of a modified quechers method coupled to LC-MS/MS[J]. Microchemical Journal, 2020, 155: 104732. doi: 10.1016/j.microc.2020.104732

    [17]

    Jeong W T, Kim C J, Ryu S H. Establishment of a GC-HRMS-IDMS-based modified QuEChERS approach for rapid, reliable, and simultaneous determination of organochlorine pesticides in soil[J]. Microchemical Journal, 2024, 197: 109754. doi: 10.1016/j.microc.2023.109754

    [18]

    Llompart M, Celeiro M, Dagnac T. Microwave-assisted extraction of pharmaceuticals, personal care products and industrial contaminants in the environment[J]. TrAC Trends in Analytical Chemistry, 2019, 116: 136−150. doi: 10.1016/j.trac.2019.04.029

    [19]

    Cheng Y, Ding J, Liang X, et al. Fractions transformation and dissipation mechanism of dechlorane plus in the rhizosphere of the soil-plant system[J]. Environmental Science & Technology, 2020, 54(11): 6610−6620. doi: 10.1021/acs.est.9b06748

    [20]

    Ayala-Cabrera J F, Lacorte S, Moyano E, et al. Analysis of dechlorane plus and related compounds in gull eggs by GC-HRMS using a novel atmospheric pressure photoionization source[J]. Analytical and Bioanalytical Chemistry, 2021, 413: 3421−3431. doi: 10.1007/s00216-021-03286-8

    [21]

    Scheurer M, Ramil M, Metcalfe C D, et al. The challenge of analyzing beta-blocker drugs in sludge and wastewater[J]. Analytical and Bioanalytical Chemistry, 2010, 396(2): 845−856. doi: 10.1007/s00216-009-3225-7

    [22]

    Xu X W, Wang S, Hou S N, et al. A multi-residue method for the determination of 77 pesticides in Red Ginseng using QuEChERS and gas chromatography/tandem mass spectrometry (GC-MS/MS)[J]. Agronomy, 2022, 12(10): 2479. doi: 10.3390/agronomy12102479

    [23]

    Maguire W J, Call C W, Cerbu C, et al. Comprehensive determination of unregulated pesticide residues in oregon cannabis flower by liquid chromatography paired with triple quadrupole mass spectrometry and gas chromatography paired with triple quadrupole mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2019, 67(46): 12670−12674. doi: 10.1021/acs.jafc.9b01559

    [24]

    Lyu B, Zhang X, Li J, et al. Determination of polychlorinated dibenzo-p-dioxins and furans in food samples by gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) and comparison with gas chromatography-high resolution mass spectrometry (GC-HRMS)[J]. Journal of Food Composition and Analysis, 2023, 115: 104947. doi: 10.1016/j.jfca.2022.104947

    [25]

    Guedes-Alonso R, Santana-Viera S, Montesdeoca-Esponda S, et al. Application of microwave-assisted extraction and ultra-high performance liquid chromatography-tandem mass spectrometry for the analysis of sex hormones and corticosteroids in sewage sludge samples[J]. Analytical and Bioanalytical Chemistry, 2016, 408(24): 6833−6844. doi: 10.1007/s00216-016-9810-7

    [26]

    Ndwabu S, Malungana M, Mahlambi P. Comparison of ultra-sonication and microwave extraction followed by filtration or filtration and solid-phase extraction clean-up for PAH determination from sediment and sludge: Human health and ecological risk assessment[J]. Applied Sciences, 2023, 13(9): 5619. doi: 10.3390/app13095619

    [27]

    Pérez-Lemus N, López-Serna R, Pérez-Elvira S I, et al. Sample pre-treatment and analytical methodology for the simultaneous determination of pharmaceuticals and personal care products in sewage sludge[J]. Chemosphere, 2020, 258: 127273. doi: 10.1016/j.chemosphere.2020.127273

    [28]

    López-Salazar H, Camacho-Díaz B H, Ocampo M L A, et al. Microwave-assisted extraction of functional compounds from plants: A review[J]. BioResources, 2023, 18(3): 6614−6638. doi: 10.15376/biores.18.3.lopez-salazar

    [29]

    Zuloaga O, Navarro P, Bizkarguenaga E, et al. Overview of extraction, clean-up and detection techniques for the determination of organic pollutants in sewage sludge: A review[J]. Analytica Chimica Acta, 2012, 736: 7−29. doi: 10.1016/j.aca.2012.05.016

    [30]

    Pérez L N, López S R, Pérez E S I, et al. Analytical methodologies for the determination of pharmaceuticals and personal care products (PPCPs) in sewage sludge: A critical review[J]. Analytica Chimica Acta, 2019, 1083: 19−40. doi: 10.1016/j.aca.2019.06.044

    [31]

    Tankiewicz M, Berg A. Improvement of the quechers method coupled with GC-MS/MS for the determination of pesticide residues in fresh fruit and vegetables[J]. Microchemical Journal, 2022, 181: 107794. doi: 10.1016/j.microc.2022.107794

    [32]

    Sadighara P, Basaran B, Afshar A, et al. Optimization of clean-up in QuEChERS method for extraction of mycotoxins in food samples: A systematic review[J]. Microchemical Journal, 2024, 197: 109711. doi: 10.1016/j.microc.2023.109711

    [33]

    Shen L, Reiner E J, MacPherson K A, et al. Dechloranes 602, 603, 604, dechlorane plus, and chlordene plus, a newly detected analogue, in tributary sediments of the Laurentian Great Lakes[J]. Environmental Science & Technology, 2011, 45(2): 693−699. doi: 10.1021/es1027844

    [34]

    Zhao T, Tang H, Chen D, et al. Rapid analysis of dechloranes in sediment and soil by selective pressurized liquid extraction using Mg-Al layered double oxides as sorbents[J]. Analytical Methods, 2017, 9(7): 1168−1176. doi: 10.1039/c7ay00009j

    [35]

    Zhen X, Li Y, Wang X, et al. Source, fate and budget of dechlorane plus (DP) in a typical semi-closed sea, China[J]. Environmental Pollution, 2021, 269: 116214. doi: 10.1016/j.envpol.2020.116214

    [36]

    Qiu Y W, Wang D X, Zhang G. Assessment of persistent organic pollutants (POPs) in sediments of the eastern Indian Ocean[J]. Science of the Total Environment, 2020, 710: 136335. doi: 10.1016/j.scitotenv.2019.136335

    [37]

    Kolic T M, Shen L, MacPherson K, et al. The analysis of halogenated flame retardants by GC-HRMS in environmental samples[J]. Journal of Chromatographic Science, 2009, 47(1): 83−91. doi: 10.1093/chromsci/47.1.83

    [38]

    张照荷, 陈典, 赵微, 等. 水环境中药物与个人护理品(PPCPs)的环境水平及降解行为研究进展[J]. 岩矿测试, 2023, 42(4): 649−666. doi: 10.15898/j.ykcs.202210260207

    Zhang Z H, Chen D, Zhao W, et al. Environmental levels and degradation behavior of pharmaceuticals and personal care products (PPCPs) in the water environment[J]. Rock and Mineral Analysis, 2023, 42(4): 649−666. doi: 10.15898/j.ykcs.202210260207

    [39]

    Jia H, Sun Y, Liu X, et al. Concentration and bioaccumulation of dechlorane compounds in coastal environment of northern China[J]. Environmental Science & Technology, 2011, 45(7): 2613−2618. doi: 10.1021/es103723h

    [40]

    Kuypers M M M, Marchant H, Kartal B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5): 263−276. doi: 10.1038/nrmicro.2018.9

    [41]

    Gallardo-Altamirano M J, Maza-Márquez P, Pérez S, et al. Fate of pharmaceutically active compounds in a pilot-scale A2O integrated fixed-film activated sludge (IFAS) process treating municipal wastewater[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105398. doi: 10.1016/j.jece.2021.105398

  • 加载中

(8)

(4)

计量
  • 文章访问数:  162
  • PDF下载数:  34
  • 施引文献:  0
出版历程
收稿日期:  2024-09-19
修回日期:  2024-12-31
录用日期:  2025-01-10
网络出版日期:  2025-01-21
刊出日期:  2025-03-20

目录