Quantitative Calculation Model for the Secondary Porosity of Sandstone Based on Mineral Dissolution Experiment and Its Application
-
摘要:
次生孔隙形成机制及定量评价是深层储层研究的核心内容。本文根据东营凹陷民丰洼陷沙四段储层的现今温压条件以及对应地层水特征,利用高温高压地球化学实验模拟系统对储层地层水中矿物的溶解-沉淀行为进行了实验模拟。实验结果表明,在现今地层水和温压条件下,石英、斜长石可以发生溶蚀作用,且溶解度随着温度的升高而增大;而方解石发生胶结作用,其沉淀量随着温度升高变化不大,总体集中在70×10−3g/L左右。基于实验模拟结果,在充分考虑地层的渗流速率、沉淀速度、埋藏时间、孔隙度等因素下,建立了砂岩储层溶蚀次生孔隙数学模型。依据数学模型计算得出,丰8井中CaCl2水型在171℃矿物溶蚀对储层孔隙度的贡献值最大,为2.5235%,是模拟深度范围内最有利于次生孔隙带发育带。模型计算表明,渗流速率是影响次生溶蚀孔隙发育的主要因素。实际储层的成岩现象与实验模拟结果具有良好的相关性,存在明显的石英和长石溶解,碳酸盐矿物以胶结物、交代物形式发育。本文建立的砂岩次生孔隙定量计算模型可以基于矿物溶解度、矿物含量、储层温压条件和地层水化学特征,对深层次生孔隙发育带进行定量预测。
Abstract:The formation mechanism and quantitative evaluation of secondary pore is the key problem for deep reservoirs. The experiments on dissolution-precipitation behavior of formation water and minerals in reservoirs were carried out by using a high temperature and pressure geochemical experimental simulation system based on the present temperature and pressure conditions of Minfeng sub-sag in the Dongying depression and the corresponding formation water characteristics. The experimental results show that under the current formation water and temperature pressure conditions, quartz and plagioclase could undergo dissolution, and the solubility increased with the increase of temperature, while calcite underwent cementation, and its growth rate changed little with the increase of temperature, generally concentrated at around 70×10−3g/L. Based on the experimental simulation results and taking into account factors such as the permeability flow rate, precipitation velocity, burial time, and porosity of the formation, a mathematical model of secondary porosity in sandstone reservoirs due to dissolution was established. According to the mathematical model calculation, the CaCl2 water type at 171℃ in Feng 8 well had the maximum contribution value of 2.5235% to the physical properties of the reservoir, which was the most favorable water type and temperature for the development of a secondary porosity zone within the simulation depth range of this well. The model calculation shows that the seepage rate was the main factor affecting the development of secondary dissolution pores. Combined with the diagenetic phenomenon of actual reservoirs in Feng 8 well, it had good correlation and obvious dissolution of quartz and feldspar, development of carbonate minerals in the form of cementation and metasomatism, which was consistent with the experimental simulation results. Based on mineral solubility, mineral content, reservoir temperature and pressure conditions and formation water chemistry, the quantitative calculation model established here can be used to predict the deep secondary pore development zone.
-
Key words:
- sandstone /
- solubility of mineral /
- precipitation velocity /
- water-rock interaction /
- dissolution pore
-
-
表 1 实验模拟的温度及压力
Table 1. Temperatures and pressures in simulation experiments
井号 深度(m) 层位 温度(℃) 压力(MPa) 丰深1 4329.8 Es4 119 37.97 丰深3 4768.8 Es4 171 52.76 丰深4 4530.0 Es4 165 45.98 丰8 4080.6 Es4 138 39.64 表 2 实验模拟结果
Table 2. Results of simulation experiments
水型 矿物 埋藏深度
(m)温度
(℃)压力
(MPa)实验前质量
(g)实验后质量
(g)溶蚀量
(g)溶液体积
(L)溶解度
(×10−3,g/L)CaCl2 石英 4329.8 119 37.97 2.2517 2.2498 0.0019 0.1220 15.5738 CaCl2 石英 4080.6 138 39.64 2.2508 2.2472 0.0036 0.1230 29.2683 CaCl2 石英 4530.0 165 45.98 4.4514 4.4348 0.0166 0.2070 80.1932 CaCl2 石英 4768.8 171 52.76 4.4523 4.4313 0.0210 0.2060 101.9417 CaCl2 斜长石 4329.8 119 37.97 2.2534 2.2526 0.0008 0.1230 6.50410 CaCl2 斜长石 4080.6 138 39.64 2.2527 2.2511 0.0016 0.1210 13.2231 CaCl2 斜长石 4530.0 165 45.98 4.4517 4.4358 0.0159 0.2070 76.8116 CaCl2 斜长石 4768.8 171 52.76 4.4520 4.4341 0.0179 0.2100 85.2381 水型 矿物 埋藏深度
(m)温度
(℃)压力
(MPa)实验前质量
(g)实验后质量
(g)增量
(g)溶液体积
(L)沉淀量
(×10−3,g/L)CaCl2 方解石 4329.8 119 37.97 2.2524 2.2615 0.0091 0.1250 72.8000 CaCl2 方解石 4080.6 138 39.64 2.2539 2.2635 0.0096 0.1260 76.1905 CaCl2 方解石 4530.0 165 45.98 4.4564 4.4688 0.0124 0.2060 60.1942 CaCl2 方解石 4768.8 171 52.76 4.4564 4.4720 0.0156 0.2110 73.9336 表 3 丰8井次生孔隙度与胶结率的计算结果
Table 3. Calculation results of secondary porosity and cementation rate in Feng 8 well
井段丰8
矿物μ
(MPa·s)k
(×10−3μm2)$ \dfrac{{\partial p}}{{\partial l}} $
(MPa/m)νf
(m/s)t
(s)S
(m2)φ
(%)c
(×10−3,g/L)X
(%)ρ
(g/cm3)Vf
(m3)Vr
(m3)φs
(%)石英 0.3959 0.0083 0.0107 2.2432×10−10 3.1536×1013 1 13.93 15.5738 18 2.65 0.0058 1 0.1042 石英 0.3389 0.0083 0.0107 2.6204×10−10 3.1536×1013 1 13.93 29.2683 18 2.65 0.0127 1 0.2288 石英 0.2818 0.0083 0.0107 3.1510×10−10 3.1536×1013 1 13.93 80.1932 18 2.65 0.0419 1 0.7540 石英 0.2720 0.0083 0.0107 3.2653×10−10 3.1536×1013 1 13.93 101.9417 18 2.65 0.0552 1 0.9932 斜长石 0.3959 0.0083 0.0107 2.2432×10−10 3.1536×1013 1 13.93 6.5041 37 2.62 0.0024 1 0.0905 斜长石 0.3389 0.0083 0.0107 2.6204×10−10 3.1536×1013 1 13.93 13.2231 37 2.62 0.0058 1 0.2150 斜长石 0.2818 0.0083 0.0107 3.1510×10−10 3.1536×1013 1 13.93 76.8116 37 2.62 0.0406 1 1.5015 斜长石 0.2720 0.0083 0.0107 3.2653×10−10 3.1536×1013 1 13.93 85.2381 37 2.62 0.0467 1 1.7267 井段丰8
矿物μ
(MPa·s)k
(×10−3μm2)$ \dfrac{{\partial p}}{{\partial l}} $
(MPa/m)νf
(m/s)t
(s)S
(m2)φ
(%)c
(×10−3,g/L)X
(%)ρ
(g/cm3)Vm
(m3)Vr
(m3)φc
(%)方解石 0.3959 0.0083 0.0107 2.2432×10−10 3.1536×1013 1 13.93 72.8000 5 2.7 0.0266 1 0.1328 方解石 0.3389 0.0083 0.0107 2.6204×10−10 3.1536×1013 1 13.93 76.1905 5 2.7 0.0325 1 0.1624 方解石 0.2818 0.0083 0.0107 3.1510×10−10 3.1536×1013 1 13.93 60.1942 5 2.7 0.0309 1 0.1543 方解石 0.2720 0.0083 0.0107 3.2653×10−10 3.1536×1013 1 13.93 73.9336 5 2.7 0.0393 1 0.1964 表 4 丰8井CaCl2水型矿物对储层孔隙的贡献度(%)
Table 4. The contribution value of CaCl2-water type minerals to reservoir physical property in Feng 8 well (%)
温度
(℃)石英孔隙的
贡献度斜长石孔隙的
贡献度方解石孔隙的
贡献度三种矿物的
贡献度之和119 0.1042 0.0905 −0.1328 0.0619 138 0.2288 0.2150 −0.1624 0.2814 165 0.7540 1.5015 −0.1543 2.1012 171 0.9932 1.7267 −0.1964 2.5235 -
[1] 陈勇, 王成军, 孙祥飞, 等. 碎屑岩储层矿物溶解度与溶蚀次生孔隙形成机理研究进展[J]. 矿物岩石地球化学通报, 2015, 34(4): 830−836.
Chen Y, Wang C J, Sun X F, et al. Progress on mineral solubility and mechanism of dissolution secondary porosity forming in clastic reservoir[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(4): 830−836.
[2] Surdam R C, Crossey L J. Organic-inorganic reactions during progressive burial: Key to porosity and permeability enhancement and preservation[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1985, 315(1531): 135−156. doi: 10.1098/rsta.1985.0034
[3] 黄思静, 杨俊杰, 张文正, 等. 不同温度条件下乙酸对长石溶蚀过程的实验研究[J]. 沉积学报, 1995, 13(1): 7−17.
Huang S J, Yang J J, Zhang W Z, et al. Experimental study of feldspar dissolution by acetic acid at different burial temperatures[J]. Acta Sedimentologica Sinica, 1995, 13(1): 7−17.
[4] Blake R E, Walter L M. Effects of organic acids on the dissolution of orthoclase at 80℃ and pH 6[J]. Chemical Geology, 1996, 132(1−4): 91−102. doi: 10.1016/S0009-2541(96)00044-7
[5] Welch S A, Ullman W J. Feldspar dissolution in acidic and organic solutions: Compositional and pH dependence of dissolution rate[J]. Geochimica et Cosmochimica Acta, 1996, 60(16): 2939−2948. doi: 10.1016/0016-7037(96)00134-2
[6] Huang W L, Longo J M. The effect of organics on feldspar dissolution and the development of secondary porosity[J]. Chemical Geology, 1992, 98(3−4): 271−292. doi: 10.1016/0009-2541(92)90189-C
[7] 罗孝俊, 杨卫东. 有机酸对长石溶解度影响的热力学研究[J]. 矿物学报, 2001, 21(2): 183−188. doi: 10.16461/j.cnki.1000-4734.2001.02.014
Luo X J, Yang W D. The effect of organic acid on feldspar solubility: A thermodynamic study[J]. Acta Mineralogica Sinica, 2001, 21(2): 183−188. doi: 10.16461/j.cnki.1000-4734.2001.02.014
[8] 陈传平, 固旭, 周苏闽, 等. 不同有机酸对矿物溶解的动力学实验研究[J]. 地质学报, 2008, 82(7): 1007−1012. doi: 10.3321/j.issn:0001-5717.2008.07.019
Chen C P, Gu X, Zhou S M, et al. Experimental research on dissolution dynamics of main minerals in several aqueous organic acid solutions[J]. Acta Geologica Sinica, 2008, 82(7): 1007−1012. doi: 10.3321/j.issn:0001-5717.2008.07.019
[9] 曹正林, 袁剑英, 黄成刚, 等. 高温高压碎屑岩储层中石膏溶解对方解石沉淀的影响[J]. 石油学报, 2014, 35(3): 450−454. doi: 10.7623/syxb201403005
Cao Z L, Yuan J Y, Huang C G, et al. Influence of plaster dissolution on calcite precipitation in clastic reservoirs under high-temperature and high-pressure conditions[J]. Acta Petrolei Sinica, 2014, 35(3): 450−454. doi: 10.7623/syxb201403005
[10] Shmulovich K, Graham C, Yardley B. Quartz, albite and diopside solubilities in H2O-NaCl and H2O-CO2 fluids at 0.5−0.9GPa[J]. Contributions to Mineralogy and Petrology, 2001, 141(1): 95−108. doi: 10.1007/s004100000224
[11] 曲希玉, 刘立, 马瑞, 等. CO2流体对岩屑长石砂岩改造作用的实验[J]. 吉林大学学报(地球科学版), 2008, 38(6): 959−964. doi: 10.13278/j.cnki.jjuese.2008.06.002
Qu X Y, Liu L, Ma R, et al. Experiment on debris-arkosic sandstone reformation by CO2 fluid[J]. Journal of Jilin University (Earth Science Edition), 2008, 38(6): 959−964. doi: 10.13278/j.cnki.jjuese.2008.06.002
[12] 任拥军, 陈勇. 东营凹陷民丰洼陷深部天然气储层酸性溶蚀作用的流体包裹体证据[J]. 地质学报, 2010, 84(2): 257−262. doi: 10.19762/j.cnki.dizhixuebao.2010.02.011
Ren Y J, Chen Y. Acid dissolution of deep natural gas reservoirs in the Minfeng Sag in the Dongying Depression: Evidence from fluid inclusions[J]. Acta Geologica Sinica, 2010, 84(2): 257−262. doi: 10.19762/j.cnki.dizhixuebao.2010.02.011
[13] Shiraki R, Rock P A, Casey W H. Dissolution kinetics of calcite in 0.1M NaCl solution at room temperature: An atomic force microscopic (AFM) study[J]. Aquatic Geochemistry, 2000, 6: 87−108. doi: 10.1023/A:1009656318574
[14] Newton R C, Manning C E. Experimental determination of calcite solubility in H2O-NaCl solutions at deep crust/upper mantle pressures and temperatures: Implications for metasomatic processes in shear zones[J]. American Mineralogist, 2002, 87(10): 1401−1409. doi: 10.2138/am-2002-1016
[15] Shmulovich K I, Yardley B W D, Graham C M. Solubility of quartz in crustal fluids: Experiments and general equations for salt solutions and H2O-CO2 mixtures at 400−800℃ and 0.1−0.9GPa[J]. Geofluids, 2006, 6(2): 154−167. doi: 10.1111/j.1468-8123.2006.00140.x
[16] Li M, Li C, Xing J, et al. An experimental study on dynamic coupling process of alkaline feldspar dissolution and secondary mineral precipitation[J]. Acta Geochim, 2019, 38: 872−882. doi: 10.1007/s11631-019-00326-0
[17] Meng W, Sui F, Hao X, et al. Thermodynamic characteristics and mineral dissolution model of the H2O-CO2-CaCO3-albite-SiO2 system in sedimentary basins[J]. Fuel, 2022, 308: 121992. doi: 10.1016/j.fuel.2021.121992
[18] Yuan G H, Cao Y C, Gluyas J, et al. How important is carbonate dissolution in buried sandstones: Evidences from petrography, porosity, experiments, and geochemical calculations[J]. Petroleum Science, 2019, 16: 729−751. doi: 10.1007/s12182-019-0344-4
[19] Cao Y, Yuan G, Wang Y, et al. Successive formation of secondary pores via feldspar dissolution in deeply buried feldspar-rich clastic reservoirs in typical petroliferous basins and its petroleum geological significance[J]. Science China Earth Sciences, 2022, 65(9): 1673−1703. doi: 10.1007/s11430-020-9931-9
[20] 郭欣欣, 刘立, 曲希玉, 等. 碱性地层水对火山碎屑岩改造作用的实验研究[J]. 石油实验地质, 2013, 35(3): 314−319. doi: 10.11781/sysydz201303314
Guo X X, Liu L, Qu X Y, et al. Experimental study on reformation of volcanic clastic rocks by alkaline formation water[J]. Petroleum Geology & Experiment, 2013, 35(3): 314−319. doi: 10.11781/sysydz201303314
[21] 徐梅桂, 张哨楠, 伏美燕, 等. 不同淡水成岩体系下长石溶蚀的对比实验[J]. 现代地质, 2013, 27(4): 925−933. doi: 10.3969/j.issn.1000-8527.2013.04.019
Xu M G, Zhang S N, Fu M Y, et al. Contrast experiments about dissolution of feldspar in different freshwater diagenetic systems[J]. Geoscience, 2013, 27(4): 925−933. doi: 10.3969/j.issn.1000-8527.2013.04.019
[22] Blatt H, Middleton G, Murray R. Origin of sedimentary rocks (The second edition)[M]. New Jersey: Prentice Hall Inc, 1980: 332−362.
[23] 孙致安, 卢寿慈. 钙、镁离子对石英、赤铁矿凝聚与絮凝的作用[J]. 矿冶工程, 1992, 12(2): 19−22.
Sun Z A, Lu S C. Effect of calcium and magnesium ions on aggregation and flocculation of quartz and hematite[J]. Mining and Metallurgical Engineering, 1992, 12(2): 19−22.
[24] Strandh H, Pettersson L G M, Sjöberg L, et al. Quantum chemical studies of the effects on silicate mineral dissolution rates by adsorption of alkali metals[J]. Geochimica et Cosmochimica Acta, 1997, 61(13): 2577−2587. doi: 10.1016/S0016-7037(97)00118-X
[25] Dove P M. The dissolution kinetics of quartz in aqueous mixed cation solutions[J]. Geochimica et Cosmochimica Acta, 1999, 63(22): 3715−3727. doi: 10.1016/S0016-7037(99)00218-5
[26] 张思亭, 刘耘. 不同pH值条件下石英溶解的分子机理[J]. 地球化学, 2009, 38(6): 549−557. doi: 10.19700/j.0379-1726.2009.06.004
Zhang S T, Liu Y. Molecular level dissolution mechanisms of quartz under different pH conditions[J]. Geochimica, 2009, 38(6): 549−557. doi: 10.19700/j.0379-1726.2009.06.004
[27] Arnorsson S, Stefansson A. Assessment of feldspar solubility constants in water in the range of 0 degrees to 350 degrees at vapor saturation pressures[J]. American Journal of Science, 1999, 299(3): 173−209. doi: 10.2475/ajs.299.3.173
[28] Pokrovski G S, Schott J, Salvi S, et al. Structure and stability of aluminum-silica complexes in neutral to basic solutions experimental study and molecular orbital calculations[J]. Mineralogical Magazine, 1998, 62: 1194−1195. doi: 10.1180/minmag.1998.62A.2.290
[29] Davis K J, Dove P M, de Yoreo J J. The role of Mg2+ as an impurity in calcite growth[J]. Science, 2000, 290(5494): 1134−1137. doi: 10.1126/science.290.5494.1134
[30] 袁静, 张善文, 乔俊, 等. 东营凹陷深层溶蚀孔隙的多重介质成因机理和动力机制[J]. 沉积学报, 2007, 25(6): 840−846. doi: 10.3969/j.issn.1000-0550.2007.06.004
Yuan J, Zhang S W, Qiao J, et al. The genesis and dynamic mechanisms of multi-medium dissolution pores in the deep layers of the Dongying Depression[J]. Acta Sedimentologica Sinica, 2007, 25(6): 840−846. doi: 10.3969/j.issn.1000-0550.2007.06.004
[31] 周瑶琪, 周振柱, 陈勇, 等. 东营凹陷民丰地区深部储层成岩环境变化研究[J]. 地学前缘, 2011, 18(2): 268−276.
Zhou Y Q, Zhou Z Z, Chen Y, et al. Research on diagenetic environmental changes of deep reservoir in Minfeng area, Dongying Depression[J]. Earth Science Frontiers, 2011, 18(2): 268−276.
[32] Wang Y Z, Cao Y C, Zhang S M, et al. Genetic mechanisms of secondary pore development zones of Es4 x in the north zone of the Minfeng Sag in the Dongying Depression, East China[J]. Petroleum Science, 2016, 13: 1−17. doi: 10.1007/s12182-016-0076-7
-