中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

次氯酸氧化ICP-MS同时测定金矿石中金和伴生元素银铜铅锌砷锑

王啸, 刘玖芬, 甘黎明, 李荣华, 王西, 魏欣, 何涛. 次氯酸氧化ICP-MS同时测定金矿石中金和伴生元素银铜铅锌砷锑[J]. 岩矿测试, 2025, 44(2): 268-278. doi: 10.15898/j.ykcs.202403130044
引用本文: 王啸, 刘玖芬, 甘黎明, 李荣华, 王西, 魏欣, 何涛. 次氯酸氧化ICP-MS同时测定金矿石中金和伴生元素银铜铅锌砷锑[J]. 岩矿测试, 2025, 44(2): 268-278. doi: 10.15898/j.ykcs.202403130044
WANG Xiao, LIU Jiufen, GAN Liming, LI Ronghua, WANG Xi, WEI Xin, HE Tao. Simultaneous Determination of Au and Associated Elements Ag, Cu, Pb, Zn, As and Sb in Gold Ore by ICP-MS with Hypochloric Acid Oxidation[J]. Rock and Mineral Analysis, 2025, 44(2): 268-278. doi: 10.15898/j.ykcs.202403130044
Citation: WANG Xiao, LIU Jiufen, GAN Liming, LI Ronghua, WANG Xi, WEI Xin, HE Tao. Simultaneous Determination of Au and Associated Elements Ag, Cu, Pb, Zn, As and Sb in Gold Ore by ICP-MS with Hypochloric Acid Oxidation[J]. Rock and Mineral Analysis, 2025, 44(2): 268-278. doi: 10.15898/j.ykcs.202403130044

次氯酸氧化ICP-MS同时测定金矿石中金和伴生元素银铜铅锌砷锑

  • 基金项目: 中国地质调查局地质调查项目(DD20242769);中国地质调查局自然资源综合调查指挥中心科技创新基金项目(KC20230012);中国地质调查局地质调查项目“全国金矿重点调查区调查评价项目”(DD20230060)
详细信息
    作者简介: 王啸,硕士,高级工程师,主要从事岩石矿物分析研究。E-mail:418804826@qq.com
    通讯作者: 刘玖芬,硕士,正高级工程师,主要从事地球化学和分析测试研究。E-mail:13863858360@163.com
  • 中图分类号: O657.31

Simultaneous Determination of Au and Associated Elements Ag, Cu, Pb, Zn, As and Sb in Gold Ore by ICP-MS with Hypochloric Acid Oxidation

More Information
  • 金矿石是重要的战略性矿产资源,除需检测金含量外,还需检测银铜铅锌砷锑等伴生元素含量。由于金矿石中往往含有碳质物和硫化物,对金的浸出有影响,现有方法需要焙烧-消解-预富集后测定,矿物中硫化砷、氧化砷、卤化锑等化合物沸点均低于565℃,金矿石在650℃焙烧时砷、锑极易损失,因此银铜铅锌砷锑需单独消解测定,极为繁琐。本文利用次氯酸的强氧化性,在硝酸介质中氧化碳质物与硫化物替代焙烧样品,结合离线内标建立了电感耦合等离子体质谱(ICP-MS)同时测定金银铜铅锌砷锑的方法。研究了次氯酸用量、消解时间、内标和干扰元素对分析结果的影响,结果表明10.0000g样品加入20mL硝酸和5mL次氯酸于电热板沸腾溶解近干,可将碳质物与硫化物完全氧化,稀释因子为1000时金银铜铅锌砷锑的检出限分别为0.03、0.05、0.19、0.26、0.22、0.27、0.05µg/g。应用本方法对高品位碲金矿成分分析标准物质(GBW07858、GBW07859)进行测定,结果与标准值相符;对5个不同类型的金矿石实际样品进行测定,结果与《金矿石化学分析方法》(GB/T 20899—2019)单独测定结果相符,各元素相对误差均≤5.32%,相对标准偏差(RSD,n=7)≤4.71%。本方法解决了金与银铜铅锌砷锑等伴生元素无法同时测定的问题,并省去了焙烧样品与金预富集步骤,流程简便。

  • 加载中
  • 图 1  氟化氢铵用量对金和银测定结果的影响

    Figure 1. 

    图 2  溶样时间对金、银、锑、铜、铅、锌和砷测定结果的影响

    Figure 2. 

    表 1  电感耦合等离子体质谱分析工作条件

    Table 1.  The instrument parameters of ICP-MS

    工作参数设定值工作参数设定值
    ICP射频功率1550WOmega透镜10V
    载气流速0.7L/min反应池入口−30V
    雾室温度2℃反应池出口−50V
    采样深度7mm偏转电压10V
    提取透镜10V泵速30r/min
    提取透镜2−140V雾化器气体流速0.80L/min
    Omega偏置电压−80V氧化物产率0.67%
    下载: 导出CSV

    表 2  次氯酸用量与氧化时间关系

    Table 2.  The relationship between the dosage of hypochlorous acid and oxidation time

    样品名称 次氯酸用量
    (mL)
    完全氧化时间
    (min)
    活性炭 3 11
    4 8
    5 5
    6 4
    石墨 3 19
    4 16
    5 10
    6 9
    下载: 导出CSV

    表 3  金和银加入标准回收试验

    Table 3.  The recovery tests of Au and Ag

    样品名称 元素 加标量
    (µg/g)
    测得总量
    (µg/g)
    回收率
    (%)
    活性炭 Au 5.00 4.98 97.0
    Ag 5.00 4.94 103.0
    石墨 Au 5.00 5.02 97.4
    Ag 5.00 4.97 100.5
    下载: 导出CSV

    表 4  各元素检出限和测定范围

    Table 4.  Detection limits and measurement ranges of each element

    元素空白测定值
    (µg/g)
    标准偏差
    (µg/g)
    检出限
    (µg/g)
    测定范围
    (µg/g)
    197Au0.03 0.02 0.03 0.02 0.01 0.03 0.03 0.03 0.04 0.03 0.030.0080.030.12~20
    107Ag0.09 0.08 0.05 0.04 0.04 0.05 0.06 0.07 0.05 0.06 0.060.0160.050.20~1000
    63Cu0.35 0.36 0.41 0.37 0.42 0.31 0.45 0.41 0.46 0.53 0.450.0620.190.76~2000
    208Pb0.42 0.41 0.51 0.42 0.53 0.36 0.58 0.51 0.48 0.62 0.610.0860.261.04~2000
    66Zn0.47 0.49 0.53 0.42 0.51 0.65 0.57 0.55 0.54 0.58 0.660.0720.220.88~2000
    75As0.52 0.54 0.61 0.55 0.63 0.46 0.67 0.51 0.59 0.76 0.480.0890.271.08~2000
    121Sb0.11 0.12 0.10 0.14 0.09 0.10 0.12 0.11 0.10 0.12 0.110.0140.050.20~2000
    下载: 导出CSV

    表 5  标准物质测定结果

    Table 5.  Determination results of national standard materials

    标准物质
    编号
    元素 本法测定值(µg/g) RSD
    (%)
    标准值
    (µg/g)
    相对误差
    (%)
    7次平行测定值 平均值
    GBW07858 Au 19.1 19.3 19.4 19.2 19.4 19.6 19.2 19.3 0.87 19.6±0.4 1.53
    Ag 44.0 44.1 44.8 43.5 44.2 44.8 44.1 44.2 1.04 44.2±1.4 0.00
    Cu 53.4 52.3 53.2 53.5 54.1 54.5 53.2 53.5 1.32 53.4±3.6 0.19
    Pb 68.7 70.1 70.5 71.1 69.2 69.1 71.6 70.0 1.56 70.3±2.8 0.43
    Zn 96.3 97.2 97.8 99.2 100 98.5 101 98.6 1.66 99±4 0.40
    As 12.2 12.3 12.4 12.3 12.6 12.5 12.3 12.4 1.12 12.5±0.8 0.80
    Sb 3.35 3.33 3.25 3.26 3.41 3.38 3.34 3.33 1.76 3.35±0.28 0.60
    GBW07859 Au 31.2 30.4 32.1 32.2 31.5 31.5 32.1 31.6 2.03 32.1±0.7 1.56
    Ag 67.6 67.4 68.5 67.5 67.6 68.5 67.4 67.8 0.73 67.4±2.8 0.59
    Cu 65.1 66.7 65.8 64.2 65.9 66.4 67.8 66.0 1.75 65±4.4 1.54
    Pb 87.6 86.4 85.8 87.6 86.9 87.2 86.2 86.8 0.81 87.8±3.9 1.14
    Zn 114 115 116 118 119 111 117 116 2.33 112±6 3.57
    As 12.3 12.5 12.6 12.5 12.3 12.1 12.2 12.4 1.47 12.1±0.8 2.48
    Sb 4.32 4.33 4.44 4.31 4.36 4.34 4.46 4.37 1.37 4.38±0.34 0.23
    下载: 导出CSV

    表 6  本文方法与国家标准分析方法比对实验结果

    Table 6.  Determination results of proposed method in this study and national standard method

    实际样品编号 元素 本法测定值(µg/g) RSD
    (%)
    国标法
    测定均值
    (µg/g)
    相对误差*
    (%)
    7次平行测定值 平均值
    S1 Au 0.22 0.21 0.22 0.22 0.24 0.21 0.22 0.22 4.55 0.23 4.44
    Ag 5.41 5.53 5.29 5.35 5.26 5.13 5.05 5.29 3.08 5.41 2.27
    Cu 123 125 131 133 128 124 130 128 2.99 123 3.76
    Pb 266 261 262 269 256 263 271 264 1.93 271 2.62
    Zn 87.4 83.6 87.4 85.6 88.6 85.4 90.9 87.0 2.74 85.0 2.33
    As 33.6 34.5 34.1 33.2 32.4 34.6 34.4 33.8 2.39 34.5 1.97
    Sb 11.2 10.8 11.3 10.6 11.5 11.3 10.8 11.1 3.03 10.7 3.41
    S2 Au 17.9 18.1 18.5 17.7 17.9 18.4 18.6 18.2 1.90 18.3 0.78
    Ag 10.7 10.0 9.79 10.3 10.50 10.2 10.1 10.2 3.01 10.7 4.53
    Cu 541 540 539 544 551 547 542 543 0.79 538 1.00
    Pb 43.6 43.0 42.2 41.3 40.5 39.7 39.9 41.5 3.70 43.5 4.82
    Zn 121 115 124 126 116 119 128 121 4.09 115 5.32
    As 52.6 53.6 53.3 55.1 50.5 54.3 56.2 53.7 3.42 53.1 1.04
    Sb 127 123 128 119 127 131 125 126 3.07 122 3.00
    S3 Au 1.12 1.07 1.16 1.18 1.11 1.15 1.07 1.12 3.84 1.15 2.39
    Ag 10.1 10.4 10.6 10.4 10.2 9.87 9.95 10.2 2.59 10.1 1.15
    Cu 93.2 93.6 96.2 95.4 97.8 97.1 94.6 95.4 1.82 94.2 1.28
    Pb 682 688 699 693 682 687 693 689 0.91 696 0.99
    Zn 243 245 241 235 247 238 248 242 1.96 241 0.59
    As 12.9 12.3 12.8 13.6 13.4 14.2 13.5 13.2 4.71 12.7 4.19
    Sb 2.31 2.19 2.26 2.48 2.23 2.31 2.37 2.31 4.18 2.39 3.53
    S4 Au 3.30 3.25 3.24 3.40 3.27 3.34 3.42 3.32 2.16 3.30 0.52
    Ag 115 119 115 119 121 123 124 119 2.97 115 3.78
    Cu 104 109 105 111 112 106 107 108 2.82 107 0.67
    Pb 524 513 516 519 515 525 513 518 0.96 511 1.33
    Zn 206 204 201 199 208 207 205 204 1.59 201 1.62
    As 1163 1152 1181 1133 1154 1151 1153 1155 1.25 1147 0.72
    Sb 949 955 957 948 955 957 964 955 0.56 945 1.05
    S5 Au 8.40 8.41 8.65 8.34 8.40 8.51 8.47 8.45 1.21 8.42 0.41
    Ag 65.6 67.1 65.5 64.2 63.5 65.8 65.1 65.3 1.78 65.1 0.24
    Cu 1269 1253 1256 1264 1261 1269 1252 1261 0.57 1250 0.84
    Pb 1690 1675 1681 1672 1695 1677 1680 1681 0.49 1685 0.21
    Zn 855 843 865 851 859 864 854 856 0.90 854 0.22
    As 438 423 426 435 432 437 433 432 1.30 430 0.46
    Sb 71.1 71.6 73.4 70.8 73.5 72.8 74.2 72.5 1.82 72.1 0.53
     注:“*”代表该相对误差的计算是以国标法测定平均值为真实值。
    下载: 导出CSV
  • [1]

    Kerr R A. Is the world tottering on the precipice of peak gold?[J]. Science, 2012, 335(6072): 1038−1039. doi: 10.1126/science.335.6072.1038

    [2]

    王安建, 袁小晶. 大国竞争背景下的中国战略性关键矿产资源安全思考[J]. 中国科学院院刊, 2022, 37(11): 1550−1559. doi: 10.16418/j.issn.1000-3045.20220817001

    Wang A J, Yuan X J. Security of China’s strategic and critical minerals under background of great power competition[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(11): 1550−1559. doi: 10.16418/j.issn.1000-3045.20220817001

    [3]

    王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 2019, 93(6): 1189−1209. doi: 10.19762/j.cnki.dizhixuebao.2019186

    Wang D H. Study on critical mineral resources: Significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation[J]. Acta Geologica Sinica, 2019, 93(6): 1189−1209. doi: 10.19762/j.cnki.dizhixuebao.2019186

    [4]

    王楠, 孙旭东, 霍地. 小火试金分离富集火焰原子吸收光谱法测定矿石样品中的金[J]. 光谱学与光谱分析, 2019, 39(8): 2614−2617. doi: 10.3964/j.issn.1000-0593(2019)08-2614-04

    Wang N, Sun X D, Huo D. Determination of gold in mineral samples by flame atomic absorption spectrometry after the separation and preconcentration with small fire assay[J]. Spectroscopy and Spectral Analysis, 2019, 39(8): 2614−2617. doi: 10.3964/j.issn.1000-0593(2019)08-2614-04

    [5]

    郭晓瑞, 樊蕾, 王甜甜, 等. 锑试金-微波消解-高分辨率连续光源火焰原子吸收光谱法测定金矿石中金[J]. 冶金分析, 2022, 42(12): 45−51. doi: 10.13228/j.boyuan.issn1000-7571.011859

    Guo X R, Fan L, Wang T T, et al. Determination of gold in gold ore by high resolution continuum source flame atomic absorption spectrometry combined with antimony fire assay and microwave digestion[J]. Metallurgical Analysis, 2022, 42(12): 45−51. doi: 10.13228/j.boyuan.issn1000-7571.011859

    [6]

    孙启亮, 毛香菊, 郭晓瑞, 等. 铅试金富集-高分辨率连续光源石墨炉原子吸收光谱法测定地球化学样品中痕量金铂钯[J]. 冶金分析, 2021, 41(7): 10−16. doi: 10.13228/j.boyuan.issn1000-7571.011416

    Sun Q L, Mao X J, Guo X R, et al. Determination of trace gold, platinum and palladium in geological samples by lead fire assay pre-concentration high resolution continuum source graphite furnace atomic absorption spectrometry[J]. Metallurgical Analysis, 2021, 41(7): 10−16. doi: 10.13228/j.boyuan.issn1000-7571.011416

    [7]

    王小强, 赵亚男, 梁倩, 等. 泡沫塑料富集-火焰原子吸收光谱法测定金矿石中金[J]. 中国无机分析化学, 2022, 12(3): 110−114. doi: 10.3969/j.issn.2095-1035.2022.03.016

    Wang X Q, Zhao Y N, Liang Q, et al. Determination of gold in gold ores by flame atomic absorption spectrometry with foam plastics enrichment[J]. Chinese Journal of Inorganic Analytical Chemistry, 2022, 12(3): 110−114. doi: 10.3969/j.issn.2095-1035.2022.03.016

    [8]

    Ramesh S L, Anjaiah K V, Mathur R, et al. Determination of gold in rocks, ores, and other geological materials by atomic absorption techniques[J]. Atomic Spectroscopy, 2001, 22(1): 263−269.

    [9]

    Volzhenin A V, Petrova N I, Medvedev N S, et al. Determination of gold and palladium in rocks and ores by atomic absorption spectrometry using two-stage probe atomization[J]. Journal of Analytical Chemistry, 2017, 72(2): 156−162. doi: 10.1134/s1061934817020150

    [10]

    王鹏, 门倩妮, 甘黎明, 等. 基于RSM模型对石墨炉原子吸收法分析痕量金测定条件的优化研究[J]. 光谱学与光谱分析, 2022, 42(8): 2334−2339. doi: 10.3964/j.issn.1000-0593(2022)08-2334-06

    Wang P, Men Q N, Gan L M, et al. Research on optimization of determination conditions for trace gold analysis by graphite furnace atomic absorption spectrometry based on RSM model[J]. Spectroscopy and Spectral Analysis, 2022, 42(8): 2334−2339. doi: 10.3964/j.issn.1000-0593(2022)08-2334-06

    [11]

    Dyachenko E N, Kolpakova N A, Oskina U A. Determination of gold by stripping voltammetry in platinum gold ore mineral raw materials on grafite electrode modified by bismuth[J]. Procedia Chemistry, 2014, 10: 47−50. doi: 10.1016/j.proche.2014.10.010

    [12]

    Kolpakova N A, Oskina Y A, Panova S M, et al. Determination of Au, Pt, Pd in gold ore mineral raw materials by stripping voltammetry[J]. MATEC Web of Conferences, 2016, 85: 01012. doi: 10.1051/matecconf/20168501012

    [13]

    马景治, 李策, 张明杰, 等. 王水溶样-电感耦合等离子体质谱(ICP-MS)法测定地质样品中的金[J]. 中国无机分析化学, 2020, 10(2): 48−51. doi: 10.3969/j.issn.2095-1035.2020.02.010

    Ma J Z, Li C, Zhang M J, et al. Direct determination of gold in geological samples by inductively coupled plasma mass spectrometry with aqua regia sampling preparation[J]. Chinese Jouranl of Inorganic Analytical Chemistry, 2020, 10(2): 48−51. doi: 10.3969/j.issn.2095-1035.2020.02.010

    [14]

    Yim S A, Choi M S, Chae J S. Direct determination of gold in rock samples using collision cell quadrupole ICP-MS[J]. Journal of the American Society for Mass Spectrometry, 2012, 23(1): 17−18. doi: 10.1007/s13361-011-0270-1

    [15]

    Tao D Y, Guo W, Xie W K, et al. Rapid and accurate determination of gold in geological materials by an improved ICP-MS method[J]. Microchemical Journal, 2017, 135: 221−225. doi: 10.1016/j.microc.2017.09.014

    [16]

    Tavakoli L, Yamini Y, Ebrahimzadeh H. Development of cloud point extraction for simultaneous extraction and determination of gold and palladium using ICP-OES[J]. Journal of Hazardous Materials, 2008, 152(2): 737−743. doi: 10.1016/j.jhazmat.2007.07.039

    [17]

    Rastegarzadeh S, Pourreza N, Larki A. Determination of trace silver in water, wastewater and ore samples using dispersive liquid–liquid microextraction coupled with flame atomic absorption spectrometry[J]. Journal of Industrial and Engineering Chemistry, 2015, 24: 297−301. doi: 10.1016/j.jiec.2014.09.045

    [18]

    Rodrigo M P, Paulina V B, Marcela M B, et al. Validation of the ASTM E1898-21 method with estimation of analytical uncertainty for the determination of silver by FAAS[J]. MAPAN, 2023, 38(4): 1005−1018. doi: 10.1007/s12647-023-00678-2

    [19]

    陈祝海. 电感耦合等离子体原子发射光谱法测定金矿石中铅锌砷铋镉汞[J]. 黄金, 2020, 41(4): 79−82. doi: 10.11792/hj20200418

    Chen Z H. Determination of Pb, Zn, As, Bi, Cd and Hg in gold ores by inductively coupled plasma-atomic emission spectroscopy[J]. Gold, 2020, 41(4): 79−82. doi: 10.11792/hj20200418

    [20]

    徐进力, 邢夏, 张勤, 等. 电感耦合等离子体发射光谱法直接测定铜矿石中银铜铅[J]. 岩矿测试, 2010, 29(4): 377−382. doi: 10.15898/j.cnki.11-2131/td.2010.04.006

    Xu J L, Xing X, Zhang Q, et al. Direct determination of silver copper lead and zinc in copper ores by inductively coupled plasma atomic emission spectrometry[J]. Rock and Mineral Analysis, 2010, 29(4): 377−382. doi: 10.15898/j.cnki.11-2131/td.2010.04.006

    [21]

    Rito B, Almeida D, Coimbra C. Post-measurement compressed calibration for ICP-MS-based metal quantification in mine residues bioleaching[J]. Scientific Reports, 2022, 12(1): 16007−16007. doi: 10.1038/s41598-022-19620-8

    [22]

    Xiong C X, Liu Y R, Gu J P. Rapid determination of As, Sb, Bi and Hg in gold ore samples by AFS with L-cysteine as a prereducer[J]. Advanced Materials Research, 2011, 1362(304): 328−333. doi: 10.4028/www.scientific.net/AMR.304.328

    [23]

    Mattiazzi P, Bohrer D, Viana C, et al. Determination of antimony in pharmaceutical formulations and beverages using high-resolution continuum-source graphite furnace atomic absorption spectrometry[J]. Journal of AOAC International, 2017, 100(3): 737−742. doi: 10.5740/jaoacint.16-0389

    [24]

    Unutkan T, Koyuncu I, Diker C, et al. Accurate and sensitive analytical strategy for the determination of antimony: Hydrogen assisted T-shaped slotted quartz tube-atom trap-flame atomic absorption spectrometry[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 102(1): 122−127. doi: 10.1007/s00128-018-2504-4

    [25]

    范凡, 温宏利, 屈文俊, 等. 王水溶样-等离子体质谱法同时测定地质样品中砷锑铋银镉铟[J]. 岩矿测试, 2009, 28(4): 333−336. doi: 10.3969/j.issn.0254-5357.2009.04.006

    Fan F, Wen H L, Qu W J, et al. Determination of arsenic, antimony, bismuth, silver, cadmium and indium in geological samples by inductively coupled plasma-mass spectrometry with aqua regia sample digestion[J]. Rock and Mineral Analysis, 2009, 28(4): 333−336. doi: 10.3969/j.issn.0254-5357.2009.04.006

    [26]

    Maja W, Anna S M, Pawel P. Improvement in the single and simultaneous generation of As, Bi, Sb and Se hydrides using a vapor generation accessory (VGA) coupled to axially viewed inductively coupled plasma optical emission spectrometry (ICP-OES)[J]. Analytical Methods, 2017, 9(5): 871−880. doi: 10.1039/c6ay02932a

    [27]

    郑智慷, 曾江萍, 王家松, 等. 常压密闭微波消解-电感耦合等离子体发射光谱法测定锑矿石中的锑[J]. 岩矿测试, 2020, 39(2): 208−215. doi: 10.15898/j.cnki.11-2131/td.201906110084

    Zheng Z K, Zeng J P, Wang J S, et al. Determination of antimony in antimony ores by inductively coupled plasma-optical emission spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2020, 39(2): 208−215. doi: 10.15898/j.cnki.11-2131/td.201906110084

    [28]

    罗永红, 韦真周, 张相钰, 等. 湿法氧化除硫碳-活性炭富集-原子吸收分光光度法测定矿石中的金[J]. 湿法冶金, 2016, 35(2): 167−170. doi: 10.13355/j.cnki.sfyj.2016.02.021

    Luo Y H, Wei Z Z, Zhang X Y, et al. Determination of gold in ore by oxidation removal sulphur and carbon-activated carbon enrichment-atomic absorption spectrophotometry[J]. Hydrometallurgy of China, 2016, 35(2): 167−170. doi: 10.13355/j.cnki.sfyj.2016.02.021

    [29]

    葛艳梅. 王水溶样-火焰原子吸收光谱法直接测定高品位金矿石的金量[J]. 岩矿测试, 2014, 33(4): 491−496. doi: 10.15898/j.cnki.11-2131/td.2014.04.005

    Ge Y M. Direct determination of high grade gold in ore by flame atomic absorption spectrometry with aqua regia sampling preparation[J]. Rock and Mineral Analysis, 2014, 33(4): 491−496. doi: 10.15898/j.cnki.11-2131/td.2014.04.005

    [30]

    Rodriguez N, Yoho M, Landsberger S. Determination of Ag, Au, Cu and Zn in ore samples from two Mexican mines by various thermal and epithermal NAA techniques[J]. Journal of Radio analytical and Nuclear Chemistry, 2016, 37(2): 955−961. doi: 10.1007/s10967-015-4277-0

    [31]

    张洁, 阳国运. 电感耦合等离子体质谱法测定金矿石中金[J]. 冶金分析, 2018, 38(11): 18−23. doi: 10.13228/j.boyuan.issn1000-7571.010426

    Zhang J, Yang G Y. Determination of gold in gold ore by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2018, 38(11): 18−23. doi: 10.13228/j.boyuan.issn1000-7571.010426

    [32]

    杨艳明. 电感耦合等离子体质谱法测定水系沉积物中银铜砷锑铋镉[J]. 冶金分析, 2019, 39(7): 58−64. doi: 10.13228/j.boyuan.issn1000-7571.010632

    Yang Y M. Determination of silver, copper, arsenic, antimony, bismuth and cadmium in stream sediment by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2019, 39(7): 58−64. doi: 10.13228/j.boyuan.issn1000-7571.010632

  • 加载中

(2)

(6)

计量
  • 文章访问数:  208
  • PDF下载数:  12
  • 施引文献:  0
出版历程
收稿日期:  2024-03-13
修回日期:  2024-07-22
录用日期:  2024-07-25
网络出版日期:  2024-10-08
刊出日期:  2025-03-20

目录