中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

全氟与多氟烷基化合物的生态风险现状与分析技术研究进展

王伟杰, 王洪涛. 全氟与多氟烷基化合物的生态风险现状与分析技术研究进展[J]. 岩矿测试, 2025, 44(2): 174-188. doi: 10.15898/j.ykcs.202412080252
引用本文: 王伟杰, 王洪涛. 全氟与多氟烷基化合物的生态风险现状与分析技术研究进展[J]. 岩矿测试, 2025, 44(2): 174-188. doi: 10.15898/j.ykcs.202412080252
WANG Weijie, WANG Hongtao. Research Progress on the Ecological Risk Status and Analytical Techniques of Per- and Polyfluoroalkyl Substances[J]. Rock and Mineral Analysis, 2025, 44(2): 174-188. doi: 10.15898/j.ykcs.202412080252
Citation: WANG Weijie, WANG Hongtao. Research Progress on the Ecological Risk Status and Analytical Techniques of Per- and Polyfluoroalkyl Substances[J]. Rock and Mineral Analysis, 2025, 44(2): 174-188. doi: 10.15898/j.ykcs.202412080252

全氟与多氟烷基化合物的生态风险现状与分析技术研究进展

  • 基金项目: 国家自然科学基金项目(52270188)
详细信息
    作者简介: 王伟杰,硕士研究生,主要研究方向为环境科学。E-mail:weijiewangtju@163.com
    通讯作者: 王洪涛,博士,教授,主要研究方向为水污染控制。E-mail:hongtao@tongji.edu.cn
  • 中图分类号: O656

Research Progress on the Ecological Risk Status and Analytical Techniques of Per- and Polyfluoroalkyl Substances

More Information
  • 全氟与多氟烷基物质(PFASs)广泛存在于土壤、水体和大气中,其持久性、迁移性和生物累积性导致其治理难度较大,其中地下水污染问题尤为严重,对生态环境安全和人类健康构成威胁。本文从PFASs的污染来源、迁移转化途径、污染现状及分析检测技术等方面,对环境介质中PFASs的研究现状进行总结。全氟辛酸(PFOA)和全氟磺酸(PFOS)是当前全球重点管控的PFASs物质。美国饮用水标准将PFOA和PFOS的限值均设定为4ng/L,而中国《生活饮用水卫生标准》对两者的限值分别为80ng/L和40ng/L。目前PFASs在地下水中的浓度范围从ng/L到μg/L不等,其中短链PFASs因较高的水溶性和迁移性,检出频率显著更高。在检测技术方面,气相色谱-质谱联用(GC-MS)和液相色谱-质谱联用(LC-MS)等高灵敏度、高分辨率的质谱分析方法仍是PFASs检测的主流手段。然而,上述方法依赖复杂的样品前处理和实验室条件,难以满足实时监测和应急响应的需求。随着监管力度的不断增强,现有技术面临着超低浓度检测灵敏度不足、复杂基质干扰以及缺乏统一分析标准等挑战。未来研究应重点关注新型PFASs的识别与毒性评估,以及检测技术的优化与创新;同时,结合人工智能技术优化数据处理和非靶向筛查的方法,提高检测效率和准确性。

  • 加载中
  • 图 1  PFASs在不同环境介质的迁移示意图

    Figure 1. 

    表 1  部分国家和地区地下水环境中典型PFASs浓度及其种类

    Table 1.  Concentrations and types of PFASs in groundwater environments of some countries and regions

    地下水样品来源 地下水环境类型 典型PFASs化合物及其浓度(ng/L) ΣPFASs
    (ng/L)
    参考文献
    PFBA PFPeA PFOA PFBS PFOS
    中国广州 垃圾填埋场地下水 n.d~119 n.d~16.4 n.d~27.4 n.d~544 n.d~9.42 3.61~784 48
    中国北京 再生水灌区地下水 2.94 0.94 2.88 1.15 <0.1 1.07~24.19 39
    中国青岛 饮用水源地下水 5.26 0.35 3.32 4.44 4.84 19.5 49
    美国北卡罗来纳州 氟化工厂附近地下水 7.3~35.9 6.2~23.5 5.3~7.5 5.1~15.1 10.7~143.4 20.3~4773 41
    美国东部地区 饮用水源地下水 n.d~42 n.d~20 n.d~1500 n.d~24 n.d~98 n.d~1645.4 50
    瑞典 消防场地地下水 n.d n.d <5~390 <1~390 5.3~16000 16~22000 51
    韩国 城市地下水 n.d 0.84~6.16 3.06~6.72 1.04~3.18 n.d n.d~36.9 52
    法国 城市地下水 n.d~63 n.d~213 0.06~14 0.04~38 0.07~80 0.56~638 53
    捷克共和国 城市地下水 0.277~7.03 0.021~7.77 0.021~4.16 0.021~1.06 0.021~8.09 n.d~23.9 54
    巴西南里奥格兰德州 饮用水源地下水 n.d~56.1 n.d~165 n.d~249 n.d~5.1 n.d~15.8 718 55
    注:“n.d”表示该数据未检出。一些国家的地下水样品在文献中未提供具体地区信息。
    下载: 导出CSV

    表 2  不同环境介质中PFASs分析样品预处理方法

    Table 2.  Sample pre-treatment methods for PFAS analysis in different environmental media

    样品类型 PFASs来源 样品预处理方法 分析仪器 参考文献
    气体 城市气体颗粒物 超声辅助溶剂萃取+SPE HPLC-QqQ;
    HPLC-QTOF-MS
    68
    污水处理厂 (主动采样:进水口和曝气池;
    被动采样:进水口、曝气池、二沉池、高效沉淀池、
    深床滤池、臭氧接触池和出水口)
    气相:索氏萃取
    颗粒相:甲醇超声萃取
    GC-QTOF-MS 69
    液体 地下水 SPE HPLC-MS/MS 49
    海水 SPE TSQ LC/MS 70
    污水 玻璃纤维过滤+串联SPE UPLC-Orbitrap MS 69
    固体 土壤 冻干+超声辅助溶剂萃取+SPE UPLC-MS 58
    污泥 冻干+超声辅助溶剂萃取+SPE UPLC-HRMS 71
    下载: 导出CSV
  • [1]

    Evich M G, Davis M J B, Mccord J P, et al. Per- and polyfluoroalkyl substances in the environment[J]. Science, 2022, 375: 512−526. doi: 10.1126/science.abg9065

    [2]

    Curtzwiler G W, Silva P, Hall A, et al. Significance of perfluoroalkyl substances (PFAS) in food packaging[J]. Integrated Environmental Assessment and Management, 2021, 17(1): 7−12. doi: 10.1002/ieam.4346

    [3]

    Janousek R M, Lebertz S, Knepper T P. Previously unidentified sources of perfluoroalkyl and polyfluoroalkyl substances from building materials and industrial fabrics[J]. Environmental Science-Processes & Impacts, 2019, 21: 1936−1945. doi: 10.1039/c9em00091g

    [4]

    Li M, Hu J, Cao X, et al. Nontarget analysis combined with TOP assay reveals a significant portion of unknown PFAS precursors in firefighting foams currently used in China[J]. Environmental Science & Technology, 2024, 58: 17104−17113. doi: 10.1021/acs.est.4c07879

    [5]

    van Der Veen I, Schellenberger S, Hanning A C, et al. Fate of per- and polyfluoroalkyl substances from durable water-repellent clothing during use[J]. Environmental Science & Technology, 2022, 56: 5886−5897. doi: 10.1021/acs.est.1c07876

    [6]

    Cousins I T, Dewitt J C, Gluege J, et al. The high persistence of PFAS is sufficient for their management as a chemical class[J]. Environmental Science-Processes & Impacts, 2020, 22: 2307−2312. doi: 10.1039/d0em00355g

    [7]

    杨朔, 陈辉伦, 盖楠, 等. 北京市大气颗粒物中全氟烷基化合物的粒径分布特征[J]. 岩矿测试, 2018, 37(5): 549−557. doi: 10.15898/j.cnki.11-2131/td.20180620074

    Yang S, Chen H L, Gai N, et al. Particle size distribution of perfluoroalkyl substances in atmospheric particulate matter in Beijing[J]. Rock and Mineral Analysis, 2018, 37(5): 549−557. doi: 10.15898/j.cnki.11-2131/td.20180620074

    [8]

    Tang Z W, Hamid F S, Yusoff I, et al. A review of PFAS research in Asia and occurrence of PFOA and PFOS in groundwater, surface water and coastal water in Asia[J]. Groundwater for Sustainable Development, 2023, 22: 100947. doi: 10.1016/j.gsd.2023.100947

    [9]

    刘浩然, 邢静怡, 任文杰. 中国土壤中全氟和多氟烷基物质的分布、迁移及管控研究进展[J]. 环境科学, 2024, 45(1): 376−385. doi: 10.13227/j.hjkx.202301055

    Liu H R, Xing J Y, Ren W J. Research progress on distribution, transportation, and control of per- and polyfluoroalkyl substances in Chinese soils[J]. Environmental Science, 2024, 45(1): 376−385. doi: 10.13227/j.hjkx.202301055

    [10]

    Ducrocq T, Merel S, Miege C. Review on analytical methods and occurrence of organic contaminants in continental water sediments[J]. Chemosphere, 2024, 365: 143275. doi: 10.1016/j.chemosphere.2024.143275

    [11]

    Lyu X, Xiao F, Shen C, et al. Per- and polyfluoroalkyl substances (PFAS) in subsurface environments: Occurrence, fate, transport, and research prospect[J]. Reviews of Geophysics, 2022, 60(3): e2021RG000765. doi: 10.1029/2021RG000765

    [12]

    Li H, Dong Q, Zhang M, et al. Transport behavior difference and transport model of long- and short-chain per- and polyfluoroalkyl substances in underground environmental media: A review[J]. Environmental Pollution, 2023, 327: 121579. doi: 10.1016/j.envpol.2023.121579

    [13]

    Weber A K, Barber L B, Leblanc D R, et al. Geo-chemical and hydrologic factors controlling subsurface transport of poly- and perfluoroalkyl substances, Cape Cod, Massachusetts[J]. Environmental Science & Technology, 2017, 51(8): 4269−4279. doi: 10.1021/acs.est.6b05573

    [14]

    Liu T, Hu L X, Han Y, et al. Non-target discovery and risk prediction of per- and polyfluoroalkyl substances (PFAS) and transformation products in wastewater treatment systems[J]. Journal of Hazardous Materials, 2024, 476: 135081. doi: 10.1016/j.jhazmat.2024.135081

    [15]

    Lenka S P, Kah M, Padhye L P. A review of the occurrence, transformation, and removal of poly- and perfluoroalkyl substances (PFAS) in wastewater treatment plants[J]. Water Research, 2021, 199: 117187. doi: 10.1016/j.watres.2021.117187

    [16]

    Nahar K, Zulkarnain N A, Niven R K. A review of analytical methods and technologies for monitoring per- and polyfluoroalkyl substances (PFAS) in water[J]. Water, 2023, 15(20): 3577. doi: 10.3390/w15203577

    [17]

    Ryu H, Li B, de Guise S, et al. Recent progress in the detection of emerging contaminants PFASs[J]. Journal of Hazardous Materials, 2021, 408: 124437. doi: 10.1016/j.jhazmat.2020.124437

    [18]

    Clark R B, Dick J E. Towards deployable electrochemical sensors for per- and polyfluoroalkyl substances (PFAS)[J]. Chemical Communications, 2021, 57(66): 8121−8130. doi: 10.1039/d1cc02641k

    [19]

    Karbassiyazdi E, Fattahi F, Yousefi N, et al. XGBoost model as an efficient machine learning approach for PFAS removal: Effects of material characteristics and operation conditions[J]. Environmental Research, 2022, 215: 114286. doi: 10.1016/j.envres.2022.114286

    [20]

    Manojkumar Y, Pilli S, Rao P V, et al. Sources, occurrence and toxic effects of emerging per- and polyfluoroalkyl substances (PFAS)[J]. Neurotoxicology and Teratology, 2023, 97: 107174. doi: 10.1016/j.ntt.2023.107174

    [21]

    Glüge J, Scheringer M, Cousins I T, et al. An overview of the uses of per- and polyfluoroalkyl substances (PFAS)[J]. Environmental Science-Processes & Impacts, 2020, 22(12): 2345−2373. doi: 10.1039/d0em00291g

    [22]

    Helmer R W, Reeves D M, Cassidy D P. Per- and polyfluorinated alkyl substances (PFAS) cycling within Michigan: Contaminated sites, landfills and wastewater treatment plants[J]. Water Research, 2022, 210: 117983. doi: 10.1016/j.watres.2021.117983

    [23]

    Hu X D C, Andrews D Q, Lindstrom A B, et al. Detection of poly- and perfluoroalkyl substances (PFASs) in US drinking water linked to industrial sites, military fire training areas, and wastewater treatment plants[J]. Environmental Science & Technology Letters, 2016, 3(10): 344−3450. doi: 10.1021/acs.estlett.6b00260

    [24]

    Nguyen H T, Mclachlan M S, Tscharke B, et al. Background release and potential point sources of per- and polyfluoroalkyl substances to municipal wastewater treatment plants across Australia[J]. Chemosphere, 2022, 293: 133657. doi: 10.1016/j.chemosphere.2022.133657

    [25]

    Chen H, Peng H, Yang M, et al. Detection, occurrence, and fate of fluorotelomer alcohols in municipal wastewater treatment plants[J]. Environmental Science & Technology, 2017, 51(16): 8953−8961. doi: 10.1021/acs.est.7b00315

    [26]

    Zhang L L, Lee L S, Niu J F, et al. Kinetic analysis of aerobic biotransformation pathways of a perfluorooctane sulfonate (PFOS) precursor in distinctly different soils[J]. Environmental Pollution, 2017, 229: 159−167. doi: 10.1016/j.envpol.2017.05.074

    [27]

    Amen R, Ibrahim A, Shafqat W, et al. A critical review on PFAS removal from water: Removal mechanism and future challenges[J]. Sustainability, 2023, 15(23): 16173. doi: 10.3390/su152316173

    [28]

    Sima M W, Jaffé P R. A critical review of modeling poly- and perfluoroalkyl substances (PFAS) in the soil-water environment[J]. Science of the Total Environment, 2021, 757: 143793. doi: 10.1016/j.scitotenv.2020.143793

    [29]

    Ivantsova E, Lu A, Martyniuk C J. Occurrence and toxicity mechanisms of perfluorobutanoic acid (PFBA) and perfluorobutane sulfonic acid (PFBS) in fish[J]. Chemosphere, 2024, 349: 140815. doi: 10.1016/j.chemosphere.2023.140815

    [30]

    Ma T, Ye C, Wang T, et al. Toxicity of per- and polyfluoroalkyl substances to aquatic invertebrates, planktons, and microorganisms[J]. International Journal of Environmental Research and Public Health, 2022, 19(24): 16729. doi: 10.3390/ijerph192416729

    [31]

    Ghisi R, Vamerali T, Manzetti S. Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: A review[J]. Environmental Research, 2019, 169: 326−341. doi: 10.1016/j.envres.2018.10.023

    [32]

    Brennan N M, Evans A T, Fritz M K, et al. Trends in the regulation of per- and polyfluoroalkyl substances (PFAS): A scoping review[J]. International Journal of Environmental Research and Public Health, 2021, 18(20): 10900. doi: 10.3390/ijerph182010900

    [33]

    Liu L P, Yan P X, Liu X, et al. Profiles and transplacental transfer of per- and polyfluoroalkyl substances in maternal and umbilical cord blood: A birth cohort study in Zhoushan, Zhejiang Province, China[J]. Journal of Hazardous Materials, 2024, 466: 133501. doi: 10.1016/j.jhazmat.2024.133501

    [34]

    张善宇, 姚谦, 施蓉, 等. 全氟与多氟烷基物质的生殖毒性研究进展[J]. 环境与职业医学, 2021, 38(10): 1161−1168. doi: 10.13213/j.cnki.jeom.2021.21082

    Zhang S Y, Yao Q, Shi R, et al. Research progress on reproductive toxicity of per- and polyfluoroalkyl substances[J]. Journal of Environmental and Occupational Medicine, 2021, 38(10): 1161−1168. doi: 10.13213/j.cnki.jeom.2021.21082

    [35]

    Niu Z P, Duan Z Z, He W X, et al. Kidney function decline mediates the adverse effects of per- and poly-fluoroalkyl substances (PFAS) on uric acid levels and hyperuricemia risk[J]. Journal of Hazardous Materials, 2024, 471: 134312. doi: 10.1016/j.jhazmat.2024.134312

    [36]

    Wen Z J, Wei Y J, Zhang Y F, et al. A review of cardiovascular effects and underlying mechanisms of legacy and emerging per- and polyfluoroalkyl substances (PFAS)[J]. Archives of Toxicology, 2023, 97(5): 1195−1245. doi: 10.1007/s00204-023-03477-5

    [37]

    游潆茜, 冯越, 付铭, 等. 全氟化合物暴露与中老年女性血脂水平的关联[J]. 环境与职业医学, 2024, 41(6): 593−600. doi: 10.11836/JEOM23387

    You Y Q, Feng Y, Fu M, et al. Asso ciations of per- and poly-fluoroalkyl substances exposure with blood lipids in middle-aged and elderly women[J]. Journal of Environmental and Occupational Medicine, 2024, 41(6): 593−600. doi: 10.11836/JEOM23387

    [38]

    Podder A, Sadmani A, Reinhart D, et al. Per and poly-fluoroalkyl substances (PFAS) as a contaminant of emerging concern in surface water: A transboundary review of their occurrences and toxicity effects[J]. Journal of Hazardous Materials, 2021, 419: 126361. doi: 10.1016/j.jhazmat.2021.126361

    [39]

    陈典, 张照荷, 赵微, 等. 北京市再生水灌区地下水中典型全氟化合物的分布现状及生态风险[J]. 岩矿测试, 2022, 41(3): 499−510. doi: 10.15898/j.cnki.11-2131/td.202111300190

    Chen D, Zhang Z H, Zhao W, et al. The occurrence, distribution and risk assessment of typical perfluorinated compounds in groundwater from a reclaimed wastewater irrigation area in Beijing[J]. Rock and Mineral Analysis, 2022, 41(3): 499−510. doi: 10.15898/j.cnki.11-2131/td.202111300190

    [40]

    Wee S Y, Aris A Z. Revisiting the “forever chemicals”, PFOA and PFOS exposure in drinking water[J]. NPJ Clean Water, 2023, 6(1): 57. doi: 10.1038/s41545-023-00274-6

    [41]

    Pétré M A, Genereux D P, Koropeckyj-Cox L, et al. Per- and polyfluoroalkyl substance (PFAS) transport from groundwater to streams near a PFAS manufacturing facility in North Carolina, USA[J]. Environmental Science & Technology, 2021, 55(9): 5848−5856. doi: 10.1021/acs.est.0c07978

    [42]

    Ng K, Alygizakis N, Androulakakis A, et al. Target and suspect screening of 4777 per- and polyfluoroalkyl substances (PFAS) in river water, wastewater, groundwater and biota samples in the Danube River Basin[J]. Journal of Hazardous Materials, 2022, 436: 129276. doi: 10.1016/j.jhazmat.2022.129276

    [43]

    Neuwald I J, Hübner D, Wiegand H L, et al. Ultra-short-chain PFASs in the sources of German drinking water: Prevalent, overlooked, difficult to remove, and unregulated[J]. Environmental Science & Technology, 2022, 56(10): 6380−6390. doi: 10.1021/acs.est.1c07949

    [44]

    Mueller V, Kindness A, Feldmann J. Fluorine mass balance analysis of PFAS in communal waters at a wastewater plant from Austria[J]. Water Research, 2023, 244: 120501. doi: 10.1016/j.watres.2023.120501

    [45]

    Joerss H, Xie Z Y, Wagner C C, et al. Transport of legacy perfluoroalkyl substances and the replacement compound HFPO-DA through the Atlantic Gateway to the Arctic Ocean—Is the Arctic a sink or a source?[J]. Environmental Science & Technology, 2020, 54(16): 9958−9967. doi: 10.1021/acs.est.0c00228

    [46]

    Crone B C, Speth T F, Wahman D G, et al. Occurrence of per- and polyfluoroalkyl substances (PFAS) in source water and their treatment in drinking water[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(24): 2359−2396. doi: 10.1080/10643389.2019.1614848

    [47]

    Wang X, Zhang H, He X, et al. Contamination of per- and polyfluoroalkyl substances in the water source from a typical agricultural area in North China[J]. Frontiers in Environmental Science, 2023, 10: 1071134. doi: 10.3389/fenvs.2022.1071134

    [48]

    Liu T, Hu L X, Han Y, et al. Non-target and target screening of per- and polyfluoroalkyl substances in landfill leachate and impact on groundwater in Guangzhou, China[J]. Science of the Total Environment, 2022, 844: 157021. doi: 10.1016/j.scitotenv.2022.157021

    [49]

    Lu G H, Shao P W, Zheng Y, et al. Perfluoroalkyl substances (PFASs) in rivers and drinking waters from Qingdao, China[J]. International Journal of Environmental Research and Public Health, 2022, 19(9): 5722. doi: 10.3390/ijerph19095722

    [50]

    Mcmahon P B, Tokranov A K, Bexfield L M, et al. Perfluoroalkyl and polyfluoroalkyl substances in groundwater used as a source of drinking water in the eastern United States[J]. Environmental Science & Technology, 2022, 56(4): 2279−2288. doi: 10.1021/acs.est.1c04795

    [51]

    Mussabek D, Söderman A, Imura T, et al. PFAS in the drinking water source: Analysis of the contamination levels, origin and emission rates[J]. Water, 2023, 15(1): 137. doi: 10.3390/w15010137

    [52]

    Yong Z Y, Kim K Y, Oh J E. The occurrence and distributions of per- and polyfluoroalkyl substances (PFAS) in groundwater after a PFAS leakage incident in 2018[J]. Environmental Pollution, 2021, 268: 115395. doi: 10.1016/j.envpol.2020.115395

    [53]

    Munoz G, Labadie P, Botta F, et al. Occurrence survey and spatial distribution of perfluoroalkyl and polyfluoroalkyl surfactants in groundwater, surface water, and sediments from tropical environments[J]. Science of the Total Environment, 2017, 607: 243−252. doi: 10.1016/j.scitotenv.2017.06.146

    [54]

    Dvorakova D, Jurikova M, Svobodova V, et al. Complex monitoring of perfluoroalkyl substances (PFAS) from tap drinking water in the Czech Republic[J]. Water Research, 2023, 247: 120764. doi: 10.1016/j.watres.2023.120764

    [55]

    Stefano P H P, Roisenberg A, Acayaba R D, et al. Occurrence and distribution of per- and polyfluoroalkyl substances (PFAS) in surface and groundwaters in an urbanized and agricultural area, southern Brazil[J]. Environmental Science and Pollution Research, 2023, 30(3): 6159−6169. doi: 10.1007/s11356-022-22603-x

    [56]

    Xiao F. Emerging poly- and perfluoroalkyl substances in the aquatic environment: A review of current literature[J]. Water Research, 2017, 124: 482−495. doi: 10.1016/j.watres.2017.07.024

    [57]

    Strynar M J, Lindstrom A B, Nakayama S F, et al. Pilot scale application of a method for the analysis of perfluorinated compounds in surface soils[J]. Chemosphere, 2012, 86(3): 252−257. doi: 10.1016/j.chemosphere.2011.09.036

    [58]

    Dauchy X, Boiteux V, Colin A, et al. Deep seepage of per- and polyfluoroalkyl substances through the soil of a firefighter training site and subsequent groundwater contamination[J]. Chemosphere, 2019, 214: 729−737. doi: 10.1016/j.chemosphere.2018.10.003

    [59]

    Qi Y, Cao H, Pan W, et al. The role of dissolved organic matter during per- and polyfluorinated substance (PFAS) adsorption, degradation, and plant uptake: A review[J]. Journal of Hazardous Materials, 2022, 436: 129139. doi: 10.1016/j.jhazmat.2022.129139

    [60]

    Cai W, Navarro D A, Du J, et al. Increasing ionic strength and valency of cations enhance sorption through hydrophobic interactions of PFAS with soil surfaces[J]. Science of the Total Environment, 2022, 817: 152975. doi: 10.1016/j.scitotenv.2022.152975

    [61]

    Zhang W, Ma L, Chen S, et al. Effects of temperature, relative humidity and soil organic carbon content on soil-air partitioning coefficients of volatile PFAS[J]. The Science of the Total Environment, 2024, 955: 176987. doi: 10.1016/j.scitotenv.2024.176987

    [62]

    Li H, Koosaletse-Mswela P. Occurrence, fate, and remediation of per- and polyfluoroalkyl substances in soils: A review[J]. Current Opinion in Environmental Science & Health, 2023, 34: 100487. doi: 10.1016/j.coesh.2023.100487

    [63]

    Lohmann R, Abass K, Bonefeld-Jorgensen E C, et al. Cross-cutting studies of per- and polyfluorinated alkyl substances (PFAS) in Arctic wildlife and humans[J]. Science of the Total Environment, 2024, 954: 176274. doi: 10.1016/j.scitotenv.2024.176274

    [64]

    Wu J, Fang G, Wang X, et al. Occurrence, partitioning and transport of perfluoroalkyl acids in gas and particles from the southeast coastal and mountainous areas of China[J]. Environmental Science and Pollution Research, 2023, 30(12): 32790−32798. doi: 10.1007/s11356-022-24468-6

    [65]

    Li X, Wang Y, Cui J, et al. Occurrence and fate of per- and polyfluoroalkyl substances (PFAS) in atmosphere: Size-dependent gas-particle partitioning, precipitation scavenging, and amplification[J]. Environmental Science & Technology, 2024, 58(21): 9283−9291. doi: 10.1021/acs.est.4c00569

    [66]

    Wang B, Yao Y, Chen H, et al. Per- and polyfluoroalkyl substances and the contribution of unknown precursors and short-chain (C2−C3) perfluoroalkyl carboxylic acids at solid waste disposal facilities[J]. Science of the Total Environment, 2020, 705: 135832. doi: 10.1016/j.scitotenv.2019.135832

    [67]

    Gonzalez-Barreiro C, Martinez-Carballo E, Sitka A, et al. Method optimization for determination of selected perfluorinated alkylated substances in water samples[J]. Analytical and Bioanalytical Chemistry, 2006, 386(7−8): 2123−2132. doi: 10.1007/s00216-006-0902-7

    [68]

    Yu N Y, Guo H W, Yang J P, et al. Non-target and suspect screening of per- and polyfluoroalkyl substances in airborne particulate matter in China[J]. Environmental Science & Technology, 2018, 52(15): 8205−8214. doi: 10.1021/acs.est.8b02492

    [69]

    Qiao B, Song D, Fang B, et al. Nontarget screening and fate of emerging per- and polyfluoroalkyl substances in wastewater treatment plants in Tianjin, China[J]. Environmental Science & Technology, 2023, 57(48): 20127−20137. doi: 10.1021/acs.est.3c03997

    [70]

    Diao J, Chen Z, Wang T, et al. Perfluoroalkyl substances in marine food webs from South China Sea: Trophic transfer and human exposure implication[J]. Journal of Hazardous Materials, 2022, 431: 128602. doi: 10.1016/j.jhazmat.2022.128602

    [71]

    Munoz G, Michaud A M, Liu M, et al. Target and nontarget screening of PFAS in biosolids, composts, and other organic waste products for land application in France[J]. Environmental Science & Technology, 2022, 56(10): 6056−6068. doi: 10.1021/acs.est.1c03697

    [72]

    Dhiman S, Ansari N G. A review on extraction, analytical and rapid detection techniques of per/poly fluoro alkyl substances in different matrices[J]. Microchemical Journal, 2024, 196: 109667. doi: 10.1016/j.microc.2023.109667

    [73]

    Janda J, Nödler K, Brauch H J, et al. Robust trace analysis of polar (C2-C8) perfluorinated carboxylic acids by liquid chromatography-tandem mass spectrometry: Method development and application to surface water, groundwater and drinking water[J]. Environmental Science and Pollution Research, 2019, 26(8): 7326−7336. doi: 10.1007/s11356-018-1731-x

    [74]

    Brumovsky M, Becanova J, Karaskova P, et al. Retention performance of three widely used SPE sorbents for the extraction of perfluoroalkyl substances from seawater[J]. Chemosphere, 2018, 193: 259−269. doi: 10.1016/j.chemosphere.2017.10.174

    [75]

    Groffen T, Bervoets L, Jeong Y, et al. A rapid method for the detection and quantification of legacy and emerging per- and polyfluoroalkyl substances (PFAS) in bird feathers using UPLC-MS/MS[J]. Journal of Chromatography B—Analytical Technologies in the Biomedical and Life Sciences, 2021, 1172: 122653. doi: 10.1016/j.jchromb.2021.122653

    [76]

    Shen Y, Wang L, Ding Y, et al. Trends in the analysis and exploration of per- and polyfluoroalkyl substances (PFAS) in environmental matrices: A review[J]. Critical Reviews in Analytical Chemistry, 2024, 54: 3171−3195. doi: 10.1080/10408347.2023.2231535

    [77]

    Karaskova P, Codling G, Melymuk L, et al. A critical assessment of passive air samplers for per- and polyfluoroalkyl substances[J]. Atmospheric Environment, 2018, 185: 186−195. doi: 10.1016/j.atmosenv.2018.05.030

    [78]

    Ahrens L, Shoeib M, Harner T, et al. Comparison of annular diffusion denuder and high volume air samplers for measuring per- and polyfluoroalkyl substances in the atmosphere[J]. Analytical Chemistry, 2011, 83(24): 9622−9628. doi: 10.1021/ac202414w

    [79]

    Padilla-Sánchez J A, Papadopoulou E, Poothong S, et al. Investigation of the best approach for assessing human exposure to poly- and perfluoroalkyl substances through indoor air[J]. Environmental Science & Technology, 2017, 51(21): 12836−12843. doi: 10.1021/acs.est.7b03516

    [80]

    Yao Y M, Zhao Y Y, Sun H W, et al. Per- and polyfluoroalkyl substances (PFASs) in indoor air and dust from homes and various microenvironments in China: Implications for human exposure[J]. Environmental Science & Technology, 2018, 52(5): 3156−3166. doi: 10.1021/acs.est.7b04971

    [81]

    Kirkwood-Donelson K I, Dodds J N, Schnetzer A, et al. Uncovering per- and polyfluoroalkyl substances (PFAS) with nontargeted ion mobility spectrometry-mass spectrometry analyses[J]. Science Advances, 2023, 9(43): eadj7048. doi: 10.1126/sciadv.adj7048

    [82]

    Rodowa A E, Christie E, Sedlak J, et al. Field sampling materials unlikely source of contamination for perfluoroalkyl and polyfluoroalkyl substances in field samples[J]. Environmental Science & Technology Letters, 2020, 7(3): 156−163. doi: 10.1021/acs.estlett.0c00036

    [83]

    Winchell L J, Wells M J M, Ross J J, et al. Analyses of per- and polyfluoroalkyl substances (PFAS) through the urban water cycle: Toward achieving an integrated analytical workflow across aqueous, solid, and gaseous matrices in water and wastewater treatment[J]. Science of the Total Environment, 2021, 774: 145257. doi: 10.1016/j.scitotenv.2021.145257

    [84]

    Liu Y, D’agostino L A, Qu G, et al. High-resolution mass spectrometry (HRMS) methods for nontarget discovery and characterization of poly- and per-fluoroalkyl substances (PFASs) in environmental and human samples[J]. TrAC-Trends in Analytical Chemistry, 2019, 121: 115420. doi: 10.1016/j.trac.2019.02.021

    [85]

    Casey J S, Jackson S R, Ryan J, et al. The use of gas chromatography-high resolution mass spectrometry for suspect screening and non-targeted analysis of per- and polyfluoroalkyl substances[J]. Journal of Chromatography A, 2023, 1693: 463884. doi: 10.1016/j.chroma.2023.463884

    [86]

    于开宁, 王润忠, 刘丹丹. 水环境中新污染物快速检测技术研究进展[J]. 岩矿测试, 2023, 42(6): 1063−1077. doi: 10.15898/j.ykcs.202302080018

    Yu K N, Wang R Z, Liu D D. A review of rapid detections for emerging contaminants in groundwater[J]. Rock and Mineral Analysis, 2023, 42(6): 1063−1077. doi: 10.15898/j.ykcs.202302080018

    [87]

    Clark R B, Dick J E. Electrochemical sensing of perfluorooctanesulfonate (PFOS) using ambient oxygen in river water[J]. ACS Sensors, 2020, 5(11): 3591−3598. doi: 10.1021/acssensors.0c01894

    [88]

    Moro G, Bottari F, Liberi S, et al. Covalent immobilization of delipidated human serum albumin on poly (pyrrole-2-carboxylic) acid film for the impedimetric detection of perfluorooctanoic acid[J]. Bioelectrochemistry, 2020, 134: 107540. doi: 10.1016/j.bioelechem.2020.107540

    [89]

    Mcdonnell C, Albarghouthi F M, Selhorst R, et al. Aerosol jet printed surface-enhanced Raman substrates: Application for high-sensitivity detection of perfluoroalkyl substances[J]. ACS Omega, 2023, 8(1): 1597−1605. doi: 10.1021/acsomega.2c07134

    [90]

    Dodds J N, Hopkins Z R, Knappe D R U, et al. Rapid characterization of per- and polyfluoroalkyl substances (PFAS) by ion mobility spectrometry-mass spectrometry (IMS-MS)[J]. Analytical Chemistry, 2020, 92(6): 4427−4435. doi: 10.1021/acs.analchem.9b05364

    [91]

    Khan R, Uygun Z O, Andreescu D, et al. Sensitive detection of perfluoroalkyl substances using MXene-AgNP-based electrochemical sensors[J]. ACS Sensors, 2024, 9(6): 3403−3412. doi: 10.1021/acssensors.4c00776

    [92]

    Lamichhane H B, Arrigan D W M. Electroanalytical chemistry of per- and polyfluoroalkyl substances[J]. Current Opinion in Electrochemistry, 2023, 40: 101309. doi: 10.1016/j.coelec.2023.101309

    [93]

    George S, Dixit A. A machine learning approach for prioritizing groundwater testing for per- and polyfluoroalkyl substances (PFAS)[J]. Journal of Environmental Management, 2021, 295: 113359. doi: 10.1016/j.jenvman.2021.113359

  • 加载中

(1)

(2)

计量
  • 文章访问数:  178
  • PDF下载数:  71
  • 施引文献:  0
出版历程
收稿日期:  2024-12-08
修回日期:  2025-01-21
录用日期:  2025-01-21
网络出版日期:  2025-01-23
刊出日期:  2025-03-20

目录