CHARACTERISTICS OF WS-A GLUTENITE RESERVOIR AND ITS INTEGRATED EVALUATION
-
摘要:
南海西部海域低渗原油地质储量大,有效动用率低,其中乌石A油田主要是砂砾岩储层,目前针对此类油藏的储层特征及综合评价研究较少,需要对乌石A油田的储层微观孔隙结构特征进行研究,明确其开发难易程度和开发潜力。选取乌石A油田具有代表性的岩样,开展了包括恒速压汞、核磁共振、非线性测试、黏土矿物分析、润湿性等多种物理模拟实验,系统地研究了乌石A油田的微观孔喉结构特征,建立了六元参数储层评价方法,对该油藏进行了综合评价。研究表明:乌石A低渗砂砾岩油田渗透率<1×10−3 μm2的储层综合分类系数<5,属于三类储层,开发难度大;渗透在(1~30)×10−3 μm2的储层综合分类系数<8,属于二类储层,开发难度较大;渗透率>30×10−3 μm2的储层综合分类系数>8,属于一类储层,开发难度小。
Abstract:The low-permeability reservoirs are large in reserve in the western South China Sea, but the utilization rate is quite low up to date. The major payzone of WS-A oilfield is of glutenite type. So far, few studies have been contributed to the characteristics of glutenite reservoir and its integrated evaluation. It is necessary to carry out the study of the microscopic pore structures so as to determine the potential and the difficulties which may be encountered in oil and gas production and development. In this paper, we selected some representative rock samples from the WS-A oilfield, and had various physical simulation experiments, such as constant velocity mercury intrusion, nuclear magnetic resonance, nonlinear test, clay mineral analysis and wettability measurement. Based on the characteristics of the microscopic pore-throat structure of the reservoir, a integrated reservoir evaluation method on six-element parameters was established for reservoir evaluation. It is found that in the WS-A low permeability glutenite oilfield, if the integrated classification coefficient of reservoirs is less than 5 or the permeability is less than 1×10−3 μm2, it belongs to the third type of reservoir and is very difficult to develop indeed; if the integrated classification coefficient of reservoirs is between 5-8 or the permeability vary between 1-30×10−3 μm2, it belongs to the second type of reservoirs, which is difficult to develop; if the integrated classification coefficient of reservoirs is greater than 8 or the permeability greater than 30×10−3 μm2, it belongs to the first type of reservoirs, which is easy to develop.
-
-
表 1 恒速压汞实验结果分析
Table 1. Test result of constant speed mercury injection
渗透率分布 /10−3μm2 喉道半径分布/μm <1 1~2 2~4 >4 所占比例/% 对渗透率贡献/% 所占比例/% 对渗透率贡献/% 所占比例/% 对渗透率贡献/% 所占比例/% 对渗透率贡献/% <1 87.17 68.11 12.83 31.89 0 0 0 0 1~5 5.2 0.2 18.5 3.58 43.89 27.18 32.41 69.04 5~10 8.73 0.3 19.23 2.63 42.19 18.21 29.85 78.86 >10 34.16 0.64 16.12 2.3 21.74 10.3 27.98 86.75 表 2 岩样黏土矿物测试结果
Table 2. Clay minerals in rock samples
岩心 孔隙
度/%渗透率/
10−3 μm2黏土总
量/%黏土矿物含量/% 伊/蒙间层(I/S) 伊利石(I) 高岭石(K) 绿泥石(C) 41 16.91 10.73 6.5 12 57 27 4 42 13.45 7.59 4.4 13 41 46 0 43 12.77 5.22 8.1 13 51 36 0 45 8.99 0.8 9.5 15 31 47 7 2-21 13.4 2.51 9.1 9 48 39 4 2-35 14.86 7.13 4.6 16 70 10 4 表 3 储层评价结果
Table 3. Reservoir evaluation result
渗透率/10−3 μm2 主流喉道
半径/μm可动流体
百分数/%拟启动压力
梯度/(MPa/m)黏土含
量/%原油黏度/
(mPa·s)润湿
指数综合分
类系数综合
评价1 2.49 45.46 0.32 7.03 1.08 0.68 4.95 Ⅲ 2 3.15 50.29 0.24 7.03 1.08 0.68 5.67 II 5 4.30 56.67 0.16 7.03 1.08 0.68 6.48 II 10 5.44 61.50 0.12 7.03 1.08 0.68 7.09 II 30 7.90 69.16 0.08 7.03 1.08 0.68 8.04 Ⅰ 50 9.40 72.71 0.06 7.03 1.08 0.68 8.48 Ⅰ -
[1] 曾小明,邹明生,张 辉,等. 北部湾盆地乌石凹陷东区流沙港组三段储层物性主控因素及分布规律[J]. 石油实验地质,2016, 38(6):757-764. doi: 10.11781/sysydz201606757
[2] 曾小明,张 辉,邹明生,等. 基于岩石物理相的储集层分类评价:以北部湾盆地乌石凹陷东区始新统流沙港组三段Ⅱ油组为例[J]. 古地理学报,2017, 19(4):703-712. doi: 10.7605/gdlxb.2017.04.055
[3] 彭志春,杨 丽,汪新光,等. 北部湾盆地乌石17-X油田流沙港组三段砂砾岩储层物性主控因素研究[J]. 科学技术与工程,2017,17(10):6-12. doi: 10.3969/j.issn.1671-1815.2017.10.002
[4] 付殿敬,徐敬领,王贵文. 基于Q型聚类分析和贝叶斯判别算法研究储层分类评价[J]. 科技导报,2011, 29(3):31-35.
[5] 涂 乙,谢传礼,刘 超,等. 灰色关联分析法在青东凹陷储层评价中的应用[J]. 天然气地球科学,2012, 23(2):381-386.
[6] 孙玉平,熊 伟,姚振华,等. 低渗透储层渗流能力模糊综合评价新方法[J]. 辽宁工程技术大学学报,2009,28(S1):294-296.
[7] 杨正明,张英芝,郝明强,等. 低渗透油田储层综合评价方法[J]. 石油学报,2006,27(2):64-67. doi: 10.3321/j.issn:0253-2697.2006.02.013
[8] 刘桂玲,孙军昌,熊生春,等. 高邮凹陷南断阶特低渗透油藏储层微观孔隙结构特征及分类评价[J]. 油气地质与采收率,2013,20(4):37-41. doi: 10.3969/j.issn.1009-9603.2013.04.009
[9] 杨秋莲,李爱琴,孙燕妮,等. 超低渗储层分类方法探讨[J]. 岩性油气藏,2007,19(4):51-56. doi: 10.3969/j.issn.1673-8926.2007.04.009
[10] 刘景环,王瑞丽,尤 丽,等. 涠西南凹陷流沙港组成岩相与有效储层研究[J]. 西南石油大学学报(自然科学版),2012,34(6):175-184.
[11] 马立民,林承焰,范梦玮. 基于微观孔隙结构分形特征的定量储层分类与评价[J]. 石油天然气学报,2012,34(5):15-19. doi: 10.3969/j.issn.1000-9752.2012.05.003
[12] 王维喜,曹天军,朱海涛. 压汞曲线在特低渗油藏储层分类中的应用[J]. 重庆科技学院学报(自然科学版),2010,12(3):18-20.
[13] 吕建荣,谭锋奇,许长福,等. 克拉玛依砾岩油藏储层分类特征及水驱油规律[J]. 东北石油大学学报,2015,39(4):21-30. doi: 10.3969/j.issn.2095-4107.2015.04.003
[14] 张恒荣,何胜林,郑香伟,等. 复杂孔隙结构低阻油层含水饱和度解释新方法[J]. 西南石油大学学报(自然科学版),2018,40(1):97-103. doi: 10.11885/j.issn.1674-5086.2016.06.26.01
[15] 张 冲. 基于海上砂砾岩低渗透率成因分析及测井评价[J]. 测井技术,2019,43(5):524-530.
[16] 赵 楠,王 磊,黄 俊,等. 不同岩性低渗储层分形特征对比及成因分析[J]. 中国海上油气,2020,32(1):87-94.
[17] 王允诚, 向 阳, 邓礼正, 等. 油层物理学[M]. 成都: 四川科学技术出版社, 2006.
[18] 熊 伟,刘华勋,高树生,等. 低渗透储层特征研究[J]. 西南石油大学学报(自然科学版),2009,31(5):89-92. doi: 10.3863/j.issn.1674-5086.2009.05.018
[19] 张乔良,储莎莎,姜 平,等. 涠洲F4油田流沙港组储层微观结构及两相渗流特征[J]. 科技导报,2014,32(12):54-59.
[20] 王为民,郭和坤,叶朝辉. 利用核磁共振可动流体评价低渗透油田开发潜力[J]. 石油学报,2001,22(6):40-44. doi: 10.3321/j.issn:0253-2697.2001.06.009
[21] 杨正明,黄 辉,骆雨田,等. 致密油藏混合润湿性测试新方法及其应用[J]. 石油学报,2017,38(3):318-323. doi: 10.7623/syxb201703008
-