A PROGRESS REVIEW OF THE MARINE GEOCHEMICAL SURVEY IN THE WORLD
-
摘要:
地球化学参数是与气候、环境、生态、资源等关系最为密切的指标之一,过去几十年中在矿产资源勘查、环境保护等领域得到了充分应用。海洋地球化学调查和研究工作也在不断深入,但缺少类似陆地地球化学填图那样系统的专项工作,对全球海洋资源、环境的评估与研究的支撑作用仍不够明显,元素含量及同位素组成等在全球海洋中的分布趋势仍认识不足。笔者对全球海洋沉积物、岩石、结核结壳和水体的无机地球化学调查进展进行了系统梳理,全面介绍了目前已开展的工作和取得的主要成果,以期为全球尺度地球化学研究提供重要参考。
Abstract:Geochemical parameters, which are closely related to palaeo-climate, palaeo-environment, palaeo-ecology and geo-resources, have been widely applied in mineral resources exploration and environmental protection in the past decades.Marine geochemical investigation and research are also deepened and advanced.However, comparing the status on land, systematic special works,such as land-based geochemical mapping, are still lacking. Its supporting function to global marine resources hunting and environment assessment remains not so obvious, and the distribution pattern of element contents and isotopic composition in the global ocean is still not fully understood.In this paper, the progress of inorganic geochemistry investigation of marine sediments, rocks, concretion crusts and water bodies in the recent years is systematically reviewed. This work will provide important reference for global scale geochemical research in the future.
-
Key words:
- ocean /
- geochemistry /
- sediment /
- rock /
- concretion crusts /
- ocean mineral
-
[1] 洪华生. 中国区域海洋学——化学海洋学[M]. 北京: 海洋出版社, 2012.
[2] Schulz H D, Zabel M. Marine Geochemistry (2nd revised, updated and extended edition)[M]. Bremen: Springer, 2006.
[3] Darnley A G. International geochemical mapping—a review[J]. Journal of Geochemical Exploration,1995,55(1/3):5-10.
[4] Garrett R G,Reimann C,Smith D B,et al. From geochemical prospecting to international geochemical mapping: a historical overview[J]. Geochemistry: Exploration,Environment,Analysis,2008,8(3/4):205-217.
[5] Xie X J,Ren T X. National geochemical mapping and environmental geochemistry-progress in China[J]. Journal of Geochemical Exploration,1993,49(1/2):15-34.
[6] Smith D B,Smith S M,Horton J D. History and evaluation of national-scale geochemical data sets for the United States[J]. Geoscience Frontiers,2013,4(2):167-183. doi: 10.1016/j.gsf.2012.07.002
[7] Andrew K,Davenport P H. Application of geochemical mapping techniques to a complex Precambrian shield area in Labrador, Canada[J]. Journal of Geochemical Exploration,1990,39(1/2):225-247.
[8] Koval P V,Burenkov E K,Golovin A A. Introduction to the program “Multipurpose Geochemical Mapping of Russia”[J]. Journal of Geochemical Exploration,1995,55(1/3):115-123.
[9] Kürzl H. Data analysis and geochemical mapping for the regional stream sediment survey of Austria[J]. Journal of Geochemical Exploration,1989,32(1/3):349-351.
[10] Lado L R,Tomislav H,Hannes I R. Heavy metals in European soils: a geostatistical analysis of the FOREGS geochemical database[J]. Geoderma,2008,148(2):189-199. doi: 10.1016/j.geoderma.2008.09.020
[11] Bowen G J,West J B,Hoogewerff J,et al. Application of Sr isotopes to geochemical mapping and provenance analysis: the case of Aichi Prefecture, central Japan[J]. Applied geochemistry,2006,21(3):419-436. doi: 10.1016/j.apgeochem.2005.12.003
[12] Bowen G J,Jason B W,Jurian H. Isoscapes: isotope mapping and its applications[J]. Journal of Geochemical Exploration,2009,102(3):5-7.
[13] Xie X J,Cheng H X. Global geochemical mapping and its implementation in the Asia–Pacific region[J]. Applied Geochemistry,2001,16(11/12):1309-1321.
[14] 谢学锦. 全球地球化学填图[J]. 中国地质,2003,30(1):1-9. doi: 10.3969/j.issn.1000-3657.2003.01.002
[15] Naipal V,Reick C,van Oost K,et al. Modeling long-term, large-scale sediment storage using a simple sediment budget approach[J]. Earth Surface Dynamics,2016(2):407-423.
[16] Frings P J,Clymans W,Fontorbe G,et al. The continental Si cycle and its impact on the ocean Si isotope budget[J]. Chemical Geology,2016,425:12-36. doi: 10.1016/j.chemgeo.2016.01.020
[17] Steinberg D K,Landry M R. Zooplankton and the ocean carbon cycle[J]. Annual Review of Marine Science,2017,9:413-444. doi: 10.1146/annurev-marine-010814-015924
[18] Steven H,Pockalny R,Fulfer V M,et al. Subseafloor life and its biogeochemical impacts[J]. Nature Communications,2019,10:3519. doi: 10.1038/s41467-019-11450-z
[19] Thomas S B,Mead A A. Large-river delta-front estuaries as natural “recorders” of global environmental change[J]. Proceedings of the National Academy of Sciences,2009,106(20):8085-8092. doi: 10.1073/pnas.0812878106
[20] National Centers for Environmental Information (NOAA). Index to Marine and Lacustrine Geological Samples (IMLGS) [EB/OL]. [2019-08-08].https://ngdc.noaa.gov/mgg/geology/seadas.html.
[21] Geoscience Australia. Marine Sediments Database [EB/OL]. [2019-08-08]. http://dbforms.ga.gov.au/pls/www/npm.mars.search.
[22] SedDB. Sediment Geochemistry Database [EB/OL]. [2019-08-08]. http://www.earthchem.org/seddb.
[23] Johansson A, Lehnert K, Hsu L. Status Report on the SedDB Sediment Geochemistry Database: March, 2012[R]. GeoPRISMS Newsletter, 2012, 28: 21.
[24] Frazer J Z, Hawkins D L. Index to sediment samples from East and Southeast Asia Seas [EB/OL]. [2019-08-08]. https://www.ngdc.noaa.gov/mgg/fliers/81mgg04.html.
[25] Archer D E. An atlas of the distribution of calcium carbonate in sediments of the deep sea[J]. Global Biogeochemical Cycles,1996,10(1):159-174. doi: 10.1029/95GB03016
[26] Catubig N R,Archer D E,Francois R,et al. Global deep-sea burial rate of calcium carbonate during the Last Glacial Maximum[J]. Paleoceanography,1998,13(3):298-310. doi: 10.1029/98PA00609
[27] Dutkiewicz A,Müller R D,O’Callaghan S,et al. Census of seafloor sediments in the world’s ocean[J]. Geology,2015,43(9):795-798. doi: 10.1130/G36883.1
[28] NAVDAT. The North American Volcanic and Intrusive Rock Database [EB/OL]. [2019-08-08]. https://www.navdat.org/.
[29] GEOROC. Database Geochemistry of Rocks of the Oceans and Continents [EB/OL]. [2019-08-08]. http://georoc.mpch-mainz.gwdg.de/georoc/.
[30] PetDB. Database of published geochemical data for igneous & metamorphic rocks [EB/OL]. [2019-08-08]. www.earthchem.org/petdb.
[31] GeoKem. Database geochemistry of igneous rocks [EB/OL]. [2019-08-08]. http://www.geokem.com/.
[32] Lehnert K,Su Y,Langmuir C,et al. A global geochemical database structure for rocks[J]. Geochemistry Geophysics Geosystems,2000,1(1):1012. doi: 10.1029/1999GC000026
[33] Straume E O,Gaina C,Medvedev S,et al. GlobSed: updated total sediment thickness in the world's oceans. Geochemistry[J]. Geophysics, Geosystems,2019,20(4):1756-1772. doi: 10.1029/2018GC008115
[34] 刘 鑫,李三忠,赵淑娟,等. 马里亚纳俯冲系统的构造特征[J]. 地学前缘,2017,24(4):329-340.
[35] Williamson B J. Testing the plagioclase discriminator using the GEOROC database to identify porphyry-fertile magmatic systems worldwide[J]. Applied Earth Science,2017,126(2):105-106. doi: 10.1080/03717453.2017.1306307
[36] Stracke A,Bizimis M,Salters V J M. Recycling oceanic crust: Quantitative constraints[J]. Geochemistry Geophysics Geosystems,2003,4(3):8003. doi: 10.1029/2001GC000223
[37] Walker J D,Bowers T D,Black R A,et al. A geochemical database for western North American volcanic and intrusive rocks (NAVDAT)[J]. Special Paper of the Geological Society of America,2006,397:61-71. doi: 10.1130/2006.2397(05)
[38] Luttinen A V. Bilateral geochemical asymmetry in the Karoo large igneous province[J]. Scientific Reports,2018,8(1):5223. doi: 10.1038/s41598-018-23661-3
[39] 于 淼,邓希光,姚会强,等. 世界海底多金属结核调查与研究进展[J]. 中国地质,2018,45(1):29-38.
[40] Hein J R,Mizell K,Koschinsky A,et al. Deep-ocean mineral deposits as a source of critical metals for high-and green-technology applications:comparison with land-based resources[J]. Ore Geology Reviews,2013,51:1-14. doi: 10.1016/j.oregeorev.2012.12.001
[41] International Seabed Authority, CentralData Repository[EB/OL]. [2019-08-08]. https://www.isa.org.jm/central-data-repository.
[42] Manheim F T, Lane-Bostwick C M. Chemical composition of ferromanganese crusts in the world ocean: a review and comprehensive database[R]. US Geological Survey, 1989.
[43] Exon N F. Ferromanganese crust and nodule deposits from the continental margin south and west of Tasmania[J]. Oceanographic Literature Review,1998,4(45):701-710.
[44] 刘永刚,何高文,姚会强,等. 世界海底富钴结壳资源分布特征[J]. 矿床地质,2013,32(6):1275-1284. doi: 10.3969/j.issn.0258-7106.2013.06.013
[45] Albarède F,Goldstein S L. World map of Nd isotopes in sea-floor ferromanganese deposits[J]. Geology,1992,20(8):761-763. doi: 10.1130/0091-7613(1992)020<0761:WMONII>2.3.CO;2
[46] Roy S. Manganese metallogenesis:A review[J]. Ore Geology Reviews,1988,4(1/2):155-170. doi: 10.1016/0169-1368(88)90011-X
[47] Ivanova Y M,Mikhailik P E,Mikhailik E V,et al. Chemical composition and genesis of ferromanganese crusts from the Sonne Ridge (Kuril Basin,Sea of Okhotsk)[J]. Russian Geology and Geophysics,2019,60:1292-1309.
[48] Guan Y,Sun X,Jiang X,et al. The effect of Fe-Mn minerals and seawater interface and enrichment mechanism of ore-forming elements of polymetallic crusts and nodules from the South China Sea[J]. Acta OceanologicaSinica,2017,36(6):34-46.
[49] Sujith P P,Gonsalves M J B D,Bhonsle S,et al. Bacterial activity in hydrogenetic ferromanganese crust from the Indian Ocean: a combined geochemical, experimental and pyrosequencing study[J]. Environmental earth sciences,2017,76(5):191. doi: 10.1007/s12665-017-6495-y
[50] Hens T,Brugger J,Etschmann B,et al. Nickel exchange between aqueous Ni (Ⅱ) and deep-sea ferromanganese nodules and crusts[J]. Chemical Geology,2019,528:119276. doi: 10.1016/j.chemgeo.2019.119276
[51] Koschinsky A,Hein J R. Marine ferromanganese encrustations: archives of changing oceans[J]. Elements,2017,13(3):177-182. doi: 10.2113/gselements.13.3.177
[52] 许东禹. 大洋矿产地质学[M]. 北京:海洋出版社, 2013.
[53] Azami K,Hirano N,Machida S,et al. Rare earth elements and yttrium (REY) variability with water depth in hydrogenetic ferromanganese crusts[J]. Chemical Geology,2018,493:224-233. doi: 10.1016/j.chemgeo.2018.05.045
[54] Schlitzer R.eGEOTRACES - Electronic Atlas of GEOTRACES Sections and Animated 3D Scenes[EB/OL]. [2019-08-08]. http://www.egeotraces.org.
[55] Deng Y,Ren J,Guo Q,et al. Rare earth element geochemistry characteristics of seawater and porewater from deep sea in western Pacific[J]. Scientific Reports,2017,7(1):16539. doi: 10.1038/s41598-017-16379-1
[56] Yasukawa K,Nakamura K,Fujinaga K,et al. Tracking the spatiotemporal variations of statistically independent components involving enrichment of rare-earth elements in deep-sea sediments[J]. Scientific Reports,2016,6:29603. doi: 10.1038/srep29603
[57] Sunday J M,Fabricius K E,Kroeker K J,et al. Ocean acidification can mediate biodiversity shifts by changing biogenic habitat[J]. Nature Climate Change,2017,7(1):81. doi: 10.1038/nclimate3161
[58] Albright R,Caldeira L,Hosfelt J,et al. Reversal of ocean acidification enhances net coral reef calcification[J]. Nature,2016,531(7594):362. doi: 10.1038/nature17155
[59] Sulpis O,Boudreau B P,Mucci A,et al. Current CaCO3 dissolution at the seafloor caused by anthropogenic CO2[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(46):11700-11705. doi: 10.1073/pnas.1804250115
[60] Hofmann E,Bundy A,Drinkwater K,et al. IMBER – Research for marine sustainability: synthesis and the way forward[J]. Anthropocene,2015,12:42-53. doi: 10.1016/j.ancene.2015.12.002
[61] 闫 菊,李 昕,王 辉. 上层海洋—低层大气科学研究计划[J]. 地球科学进展,2003,18(5):812-816. doi: 10.3321/j.issn:1001-8166.2003.05.025
[62] Mawji E,Schlitzer R,Dodas E M,et al. The GEOTRACES intermediate data product 2014[J]. Marine Chemistry,2015,177:1-8. doi: 10.1016/j.marchem.2015.04.005
[63] Schlitzer R,Anderson R F,Dodas E M,et al. The GEOTRACES intermediate data product 2017[J]. Chemical Geology,2018,493:210-223. doi: 10.1016/j.chemgeo.2018.05.040
[64] Suthers I, Rissik D, Richardson A. Plankton: a guide to their ecology and monitoring for water quality[M]. CSIRO publishing, 2019.
[65] NOAA. World Ocean Database 2018 [EB/OL]. [2019-08-08]. https://www.nodc.noaa.gov/OC5/WOD/datawodgeo.html .
[66] NOAA. World Ocean Atlas 2018 [EB/OL]. [2019-08-08]. https://www.nodc.noaa.gov/OC5/woa18/.
[67] Cutter G, Casciotti K, Croot P, et al. Sampling and Sample-Handling Protocols for GEOTRACES Cruises, version 3.0 [R]. 2017.
[68] LeGrandeAN,Schmidt G A. Global gridded data set of the oxygen isotopic composition in seawater[J]. Geophysical Research Letters,2006,33:L12604. doi: 10.1029/2006GL026011
[69] 王丽艳,李广雪. 古气候替代性指标的研究现状及应用[J]. 海洋地质与第四纪地质,2016,36(4):153-161.
[70] Volkman J K, Smittenberg R H. Lipid biomarkers as organic geochemical proxies for the paleoenvironmental reconstruction of estuarine environments[M]//Applications of paleoenvironmental techniques in estuarine studies. Springer, Dordrecht, 2017: 173-212.
[71] Raymo M E,Ruddiman W F. Tectonic forcing of late Cenozoic climate[J]. Nature (London),1992,359(6391):117-122. doi: 10.1038/359117a0
[72] 秦建华,潘桂棠,杜 谷,等. 新生代气候变化与陆地硅酸盐岩风化和海洋Sr同位素研究[J]. 矿物岩石,2002(1):32-36.
[73] Van der Ploeg R,Selby D,Cramwinckel M J,et al. Middle Eocene greenhouse warming facilitated by diminished weathering feedback[J]. Nature Communications,2018,9:2877. doi: 10.1038/s41467-018-05104-9
[74] Pearson P,Palmer M. Atmospheric carbon dioxide concentrations over the past 60 million years[J]. Nature,2000,406:695-699. doi: 10.1038/35021000
[75] Edmond J M. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones[J]. Science,1992,258(5088):1594-1597. doi: 10.1126/science.258.5088.1594
[76] Dunlea A G,Murray R W,Santiago Ramos D P,et al. Cenozoic global cooling and increased seawater Mg/Ca via reduced reverse weathering[J]. Nature Communications,2017,8:844. doi: 10.1038/s41467-017-00853-5