全球海洋地球化学调查进展

段晓勇, 孔祥淮, 印萍, 陈彬. 全球海洋地球化学调查进展[J]. 海洋地质前沿, 2020, 36(7): 1-10. doi: 10.16028/j.1009-2722.2019.209
引用本文: 段晓勇, 孔祥淮, 印萍, 陈彬. 全球海洋地球化学调查进展[J]. 海洋地质前沿, 2020, 36(7): 1-10. doi: 10.16028/j.1009-2722.2019.209
DUAN Xiaoyong, KONG Xianghuai, YIN Ping, CHEN Bin. A PROGRESS REVIEW OF THE MARINE GEOCHEMICAL SURVEY IN THE WORLD[J]. Marine Geology Frontiers, 2020, 36(7): 1-10. doi: 10.16028/j.1009-2722.2019.209
Citation: DUAN Xiaoyong, KONG Xianghuai, YIN Ping, CHEN Bin. A PROGRESS REVIEW OF THE MARINE GEOCHEMICAL SURVEY IN THE WORLD[J]. Marine Geology Frontiers, 2020, 36(7): 1-10. doi: 10.16028/j.1009-2722.2019.209

全球海洋地球化学调查进展

  • 基金项目: 中国地质调查局项目(DD20190237)
详细信息
    作者简介: 段晓勇(1987—),男,博士,副研究员,主要从事海洋地球化学调查与研究工作. E-mail:duan-xy@qq.com
  • 中图分类号: P736.4

A PROGRESS REVIEW OF THE MARINE GEOCHEMICAL SURVEY IN THE WORLD

  • 地球化学参数是与气候、环境、生态、资源等关系最为密切的指标之一,过去几十年中在矿产资源勘查、环境保护等领域得到了充分应用。海洋地球化学调查和研究工作也在不断深入,但缺少类似陆地地球化学填图那样系统的专项工作,对全球海洋资源、环境的评估与研究的支撑作用仍不够明显,元素含量及同位素组成等在全球海洋中的分布趋势仍认识不足。笔者对全球海洋沉积物、岩石、结核结壳和水体的无机地球化学调查进展进行了系统梳理,全面介绍了目前已开展的工作和取得的主要成果,以期为全球尺度地球化学研究提供重要参考。

  • 加载中
  • 图 1  全球海洋沉积物取样调查站位分布(据文献[20-23])

    Figure 1. 

    图 2  全球海底沉积物CaCO3含量分布图(数据下载自GeoMapApp,www.geomapapp.org)

    Figure 2. 

    图 3  全球岩石地球化学数据收集站位(数据来源包括GEOROC、PetDB、NAVDAT、GeoKem等数据库[28-32],共104万站位)

    Figure 3. 

    图 4  全球岩石Al2O3含量分布图(共35万个数据点,数据下载自GEOROC、NAVDAT、GeoKem数据库)

    Figure 4. 

    图 5  全球海洋结核、结壳地球化学数据收集站位(9 144站位,数据源自ISA、EarthChem数据库)

    Figure 5. 

    图 6  全球海底结核、结壳中典型元素含量与水深的相关性

    Figure 6. 

    图 7  Geotraces项目(红点,截至2017年度完成站位)和全球水体氢氧同位素调查(白点)站位(据文献[62-63,68])

    Figure 7. 

  • [1]

    洪华生. 中国区域海洋学——化学海洋学[M]. 北京: 海洋出版社, 2012.

    [2]

    Schulz H D, Zabel M. Marine Geochemistry (2nd revised, updated and extended edition)[M]. Bremen: Springer, 2006.

    [3]

    Darnley A G. International geochemical mapping—a review[J]. Journal of Geochemical Exploration,1995,55(1/3):5-10.

    [4]

    Garrett R G,Reimann C,Smith D B,et al. From geochemical prospecting to international geochemical mapping: a historical overview[J]. Geochemistry: Exploration,Environment,Analysis,2008,8(3/4):205-217.

    [5]

    Xie X J,Ren T X. National geochemical mapping and environmental geochemistry-progress in China[J]. Journal of Geochemical Exploration,1993,49(1/2):15-34.

    [6]

    Smith D B,Smith S M,Horton J D. History and evaluation of national-scale geochemical data sets for the United States[J]. Geoscience Frontiers,2013,4(2):167-183. doi: 10.1016/j.gsf.2012.07.002

    [7]

    Andrew K,Davenport P H. Application of geochemical mapping techniques to a complex Precambrian shield area in Labrador, Canada[J]. Journal of Geochemical Exploration,1990,39(1/2):225-247.

    [8]

    Koval P V,Burenkov E K,Golovin A A. Introduction to the program “Multipurpose Geochemical Mapping of Russia”[J]. Journal of Geochemical Exploration,1995,55(1/3):115-123.

    [9]

    Kürzl H. Data analysis and geochemical mapping for the regional stream sediment survey of Austria[J]. Journal of Geochemical Exploration,1989,32(1/3):349-351.

    [10]

    Lado L R,Tomislav H,Hannes I R. Heavy metals in European soils: a geostatistical analysis of the FOREGS geochemical database[J]. Geoderma,2008,148(2):189-199. doi: 10.1016/j.geoderma.2008.09.020

    [11]

    Bowen G J,West J B,Hoogewerff J,et al. Application of Sr isotopes to geochemical mapping and provenance analysis: the case of Aichi Prefecture, central Japan[J]. Applied geochemistry,2006,21(3):419-436. doi: 10.1016/j.apgeochem.2005.12.003

    [12]

    Bowen G J,Jason B W,Jurian H. Isoscapes: isotope mapping and its applications[J]. Journal of Geochemical Exploration,2009,102(3):5-7.

    [13]

    Xie X J,Cheng H X. Global geochemical mapping and its implementation in the Asia–Pacific region[J]. Applied Geochemistry,2001,16(11/12):1309-1321.

    [14]

    谢学锦. 全球地球化学填图[J]. 中国地质,2003,30(1):1-9. doi: 10.3969/j.issn.1000-3657.2003.01.002

    [15]

    Naipal V,Reick C,van Oost K,et al. Modeling long-term, large-scale sediment storage using a simple sediment budget approach[J]. Earth Surface Dynamics,2016(2):407-423.

    [16]

    Frings P J,Clymans W,Fontorbe G,et al. The continental Si cycle and its impact on the ocean Si isotope budget[J]. Chemical Geology,2016,425:12-36. doi: 10.1016/j.chemgeo.2016.01.020

    [17]

    Steinberg D K,Landry M R. Zooplankton and the ocean carbon cycle[J]. Annual Review of Marine Science,2017,9:413-444. doi: 10.1146/annurev-marine-010814-015924

    [18]

    Steven H,Pockalny R,Fulfer V M,et al. Subseafloor life and its biogeochemical impacts[J]. Nature Communications,2019,10:3519. doi: 10.1038/s41467-019-11450-z

    [19]

    Thomas S B,Mead A A. Large-river delta-front estuaries as natural “recorders” of global environmental change[J]. Proceedings of the National Academy of Sciences,2009,106(20):8085-8092. doi: 10.1073/pnas.0812878106

    [20]

    National Centers for Environmental Information (NOAA). Index to Marine and Lacustrine Geological Samples (IMLGS) [EB/OL]. [2019-08-08].https://ngdc.noaa.gov/mgg/geology/seadas.html.

    [21]

    Geoscience Australia. Marine Sediments Database [EB/OL]. [2019-08-08]. http://dbforms.ga.gov.au/pls/www/npm.mars.search.

    [22]

    SedDB. Sediment Geochemistry Database [EB/OL]. [2019-08-08]. http://www.earthchem.org/seddb.

    [23]

    Johansson A, Lehnert K, Hsu L. Status Report on the SedDB Sediment Geochemistry Database: March, 2012[R]. GeoPRISMS Newsletter, 2012, 28: 21.

    [24]

    Frazer J Z, Hawkins D L. Index to sediment samples from East and Southeast Asia Seas [EB/OL]. [2019-08-08]. https://www.ngdc.noaa.gov/mgg/fliers/81mgg04.html.

    [25]

    Archer D E. An atlas of the distribution of calcium carbonate in sediments of the deep sea[J]. Global Biogeochemical Cycles,1996,10(1):159-174. doi: 10.1029/95GB03016

    [26]

    Catubig N R,Archer D E,Francois R,et al. Global deep-sea burial rate of calcium carbonate during the Last Glacial Maximum[J]. Paleoceanography,1998,13(3):298-310. doi: 10.1029/98PA00609

    [27]

    Dutkiewicz A,Müller R D,O’Callaghan S,et al. Census of seafloor sediments in the world’s ocean[J]. Geology,2015,43(9):795-798. doi: 10.1130/G36883.1

    [28]

    NAVDAT. The North American Volcanic and Intrusive Rock Database [EB/OL]. [2019-08-08]. https://www.navdat.org/.

    [29]

    GEOROC. Database Geochemistry of Rocks of the Oceans and Continents [EB/OL]. [2019-08-08]. http://georoc.mpch-mainz.gwdg.de/georoc/.

    [30]

    PetDB. Database of published geochemical data for igneous & metamorphic rocks [EB/OL]. [2019-08-08]. www.earthchem.org/petdb.

    [31]

    GeoKem. Database geochemistry of igneous rocks [EB/OL]. [2019-08-08]. http://www.geokem.com/.

    [32]

    Lehnert K,Su Y,Langmuir C,et al. A global geochemical database structure for rocks[J]. Geochemistry Geophysics Geosystems,2000,1(1):1012. doi: 10.1029/1999GC000026

    [33]

    Straume E O,Gaina C,Medvedev S,et al. GlobSed: updated total sediment thickness in the world's oceans. Geochemistry[J]. Geophysics, Geosystems,2019,20(4):1756-1772. doi: 10.1029/2018GC008115

    [34]

    刘 鑫,李三忠,赵淑娟,等. 马里亚纳俯冲系统的构造特征[J]. 地学前缘,2017,24(4):329-340.

    [35]

    Williamson B J. Testing the plagioclase discriminator using the GEOROC database to identify porphyry-fertile magmatic systems worldwide[J]. Applied Earth Science,2017,126(2):105-106. doi: 10.1080/03717453.2017.1306307

    [36]

    Stracke A,Bizimis M,Salters V J M. Recycling oceanic crust: Quantitative constraints[J]. Geochemistry Geophysics Geosystems,2003,4(3):8003. doi: 10.1029/2001GC000223

    [37]

    Walker J D,Bowers T D,Black R A,et al. A geochemical database for western North American volcanic and intrusive rocks (NAVDAT)[J]. Special Paper of the Geological Society of America,2006,397:61-71. doi: 10.1130/2006.2397(05)

    [38]

    Luttinen A V. Bilateral geochemical asymmetry in the Karoo large igneous province[J]. Scientific Reports,2018,8(1):5223. doi: 10.1038/s41598-018-23661-3

    [39]

    于 淼,邓希光,姚会强,等. 世界海底多金属结核调查与研究进展[J]. 中国地质,2018,45(1):29-38.

    [40]

    Hein J R,Mizell K,Koschinsky A,et al. Deep-ocean mineral deposits as a source of critical metals for high-and green-technology applications:comparison with land-based resources[J]. Ore Geology Reviews,2013,51:1-14. doi: 10.1016/j.oregeorev.2012.12.001

    [41]

    International Seabed Authority, CentralData Repository[EB/OL]. [2019-08-08]. https://www.isa.org.jm/central-data-repository.

    [42]

    Manheim F T, Lane-Bostwick C M. Chemical composition of ferromanganese crusts in the world ocean: a review and comprehensive database[R]. US Geological Survey, 1989.

    [43]

    Exon N F. Ferromanganese crust and nodule deposits from the continental margin south and west of Tasmania[J]. Oceanographic Literature Review,1998,4(45):701-710.

    [44]

    刘永刚,何高文,姚会强,等. 世界海底富钴结壳资源分布特征[J]. 矿床地质,2013,32(6):1275-1284. doi: 10.3969/j.issn.0258-7106.2013.06.013

    [45]

    Albarède F,Goldstein S L. World map of Nd isotopes in sea-floor ferromanganese deposits[J]. Geology,1992,20(8):761-763. doi: 10.1130/0091-7613(1992)020<0761:WMONII>2.3.CO;2

    [46]

    Roy S. Manganese metallogenesis:A review[J]. Ore Geology Reviews,1988,4(1/2):155-170. doi: 10.1016/0169-1368(88)90011-X

    [47]

    Ivanova Y M,Mikhailik P E,Mikhailik E V,et al. Chemical composition and genesis of ferromanganese crusts from the Sonne Ridge (Kuril Basin,Sea of Okhotsk)[J]. Russian Geology and Geophysics,2019,60:1292-1309.

    [48]

    Guan Y,Sun X,Jiang X,et al. The effect of Fe-Mn minerals and seawater interface and enrichment mechanism of ore-forming elements of polymetallic crusts and nodules from the South China Sea[J]. Acta OceanologicaSinica,2017,36(6):34-46.

    [49]

    Sujith P P,Gonsalves M J B D,Bhonsle S,et al. Bacterial activity in hydrogenetic ferromanganese crust from the Indian Ocean: a combined geochemical, experimental and pyrosequencing study[J]. Environmental earth sciences,2017,76(5):191. doi: 10.1007/s12665-017-6495-y

    [50]

    Hens T,Brugger J,Etschmann B,et al. Nickel exchange between aqueous Ni (Ⅱ) and deep-sea ferromanganese nodules and crusts[J]. Chemical Geology,2019,528:119276. doi: 10.1016/j.chemgeo.2019.119276

    [51]

    Koschinsky A,Hein J R. Marine ferromanganese encrustations: archives of changing oceans[J]. Elements,2017,13(3):177-182. doi: 10.2113/gselements.13.3.177

    [52]

    许东禹. 大洋矿产地质学[M]. 北京:海洋出版社, 2013.

    [53]

    Azami K,Hirano N,Machida S,et al. Rare earth elements and yttrium (REY) variability with water depth in hydrogenetic ferromanganese crusts[J]. Chemical Geology,2018,493:224-233. doi: 10.1016/j.chemgeo.2018.05.045

    [54]

    Schlitzer R.eGEOTRACES - Electronic Atlas of GEOTRACES Sections and Animated 3D Scenes[EB/OL]. [2019-08-08]. http://www.egeotraces.org.

    [55]

    Deng Y,Ren J,Guo Q,et al. Rare earth element geochemistry characteristics of seawater and porewater from deep sea in western Pacific[J]. Scientific Reports,2017,7(1):16539. doi: 10.1038/s41598-017-16379-1

    [56]

    Yasukawa K,Nakamura K,Fujinaga K,et al. Tracking the spatiotemporal variations of statistically independent components involving enrichment of rare-earth elements in deep-sea sediments[J]. Scientific Reports,2016,6:29603. doi: 10.1038/srep29603

    [57]

    Sunday J M,Fabricius K E,Kroeker K J,et al. Ocean acidification can mediate biodiversity shifts by changing biogenic habitat[J]. Nature Climate Change,2017,7(1):81. doi: 10.1038/nclimate3161

    [58]

    Albright R,Caldeira L,Hosfelt J,et al. Reversal of ocean acidification enhances net coral reef calcification[J]. Nature,2016,531(7594):362. doi: 10.1038/nature17155

    [59]

    Sulpis O,Boudreau B P,Mucci A,et al. Current CaCO3 dissolution at the seafloor caused by anthropogenic CO2[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(46):11700-11705. doi: 10.1073/pnas.1804250115

    [60]

    Hofmann E,Bundy A,Drinkwater K,et al. IMBER – Research for marine sustainability: synthesis and the way forward[J]. Anthropocene,2015,12:42-53. doi: 10.1016/j.ancene.2015.12.002

    [61]

    闫 菊,李 昕,王 辉. 上层海洋—低层大气科学研究计划[J]. 地球科学进展,2003,18(5):812-816. doi: 10.3321/j.issn:1001-8166.2003.05.025

    [62]

    Mawji E,Schlitzer R,Dodas E M,et al. The GEOTRACES intermediate data product 2014[J]. Marine Chemistry,2015,177:1-8. doi: 10.1016/j.marchem.2015.04.005

    [63]

    Schlitzer R,Anderson R F,Dodas E M,et al. The GEOTRACES intermediate data product 2017[J]. Chemical Geology,2018,493:210-223. doi: 10.1016/j.chemgeo.2018.05.040

    [64]

    Suthers I, Rissik D, Richardson A. Plankton: a guide to their ecology and monitoring for water quality[M]. CSIRO publishing, 2019.

    [65]

    NOAA. World Ocean Database 2018 [EB/OL]. [2019-08-08]. https://www.nodc.noaa.gov/OC5/WOD/datawodgeo.html .

    [66]

    NOAA. World Ocean Atlas 2018 [EB/OL]. [2019-08-08]. https://www.nodc.noaa.gov/OC5/woa18/.

    [67]

    Cutter G, Casciotti K, Croot P, et al. Sampling and Sample-Handling Protocols for GEOTRACES Cruises, version 3.0 [R]. 2017.

    [68]

    LeGrandeAN,Schmidt G A. Global gridded data set of the oxygen isotopic composition in seawater[J]. Geophysical Research Letters,2006,33:L12604. doi: 10.1029/2006GL026011

    [69]

    王丽艳,李广雪. 古气候替代性指标的研究现状及应用[J]. 海洋地质与第四纪地质,2016,36(4):153-161.

    [70]

    Volkman J K, Smittenberg R H. Lipid biomarkers as organic geochemical proxies for the paleoenvironmental reconstruction of estuarine environments[M]//Applications of paleoenvironmental techniques in estuarine studies. Springer, Dordrecht, 2017: 173-212.

    [71]

    Raymo M E,Ruddiman W F. Tectonic forcing of late Cenozoic climate[J]. Nature (London),1992,359(6391):117-122. doi: 10.1038/359117a0

    [72]

    秦建华,潘桂棠,杜 谷,等. 新生代气候变化与陆地硅酸盐岩风化和海洋Sr同位素研究[J]. 矿物岩石,2002(1):32-36.

    [73]

    Van der Ploeg R,Selby D,Cramwinckel M J,et al. Middle Eocene greenhouse warming facilitated by diminished weathering feedback[J]. Nature Communications,2018,9:2877. doi: 10.1038/s41467-018-05104-9

    [74]

    Pearson P,Palmer M. Atmospheric carbon dioxide concentrations over the past 60 million years[J]. Nature,2000,406:695-699. doi: 10.1038/35021000

    [75]

    Edmond J M. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones[J]. Science,1992,258(5088):1594-1597. doi: 10.1126/science.258.5088.1594

    [76]

    Dunlea A G,Murray R W,Santiago Ramos D P,et al. Cenozoic global cooling and increased seawater Mg/Ca via reduced reverse weathering[J]. Nature Communications,2017,8:844. doi: 10.1038/s41467-017-00853-5

  • 加载中

(7)

计量
  • 文章访问数:  811
  • PDF下载数:  15
  • 施引文献:  0
出版历程
收稿日期:  2019-11-27
刊出日期:  2020-07-28

目录