北极海域铁锰结核和结壳的分布与成因

黄威, 路晶芳, 龚建明, 崔汝勇. 北极海域铁锰结核和结壳的分布与成因[J]. 海洋地质前沿, 2020, 36(7): 11-16. doi: 10.16028/j.1009-2722.2019.218
引用本文: 黄威, 路晶芳, 龚建明, 崔汝勇. 北极海域铁锰结核和结壳的分布与成因[J]. 海洋地质前沿, 2020, 36(7): 11-16. doi: 10.16028/j.1009-2722.2019.218
HUANG Wei, LU Jingfang, GONG Jianming, CUI Ruyong. OCCURRENCE AND GENESIS OF THE FERROMANGANESENODULES AND CRUSTS IN THE ARCTIC OCEAN[J]. Marine Geology Frontiers, 2020, 36(7): 11-16. doi: 10.16028/j.1009-2722.2019.218
Citation: HUANG Wei, LU Jingfang, GONG Jianming, CUI Ruyong. OCCURRENCE AND GENESIS OF THE FERROMANGANESENODULES AND CRUSTS IN THE ARCTIC OCEAN[J]. Marine Geology Frontiers, 2020, 36(7): 11-16. doi: 10.16028/j.1009-2722.2019.218

北极海域铁锰结核和结壳的分布与成因

  • 基金项目: 青岛海洋科学与技术试点国家实验室海洋矿产资源评价与探测技术功能实验室自主课题(MMRZZ201808);中国地质调查局地质调查项目(DD20190578,DD20191010);大洋“十三五”资源环境类课题(DY135-S01-1-02);国家重点研发计划课题(2017YFC0306603)
详细信息
    作者简介: 黄 威(1981—),男,硕士,高级工程师,主要从事海底金属成矿作用与物质循环研究工作. E-mail:sio_huangwei@126.com
  • 中图分类号: P736.21

OCCURRENCE AND GENESIS OF THE FERROMANGANESENODULES AND CRUSTS IN THE ARCTIC OCEAN

  • 对公开发表的有关北极海域铁锰结核和结壳的分布区域、化学成分,矿物类型以及年代学等数据资料进行搜集整理后发现,目前已知的浅水铁锰样品主要分布在喀拉海和楚科奇海域内,而深水铁锰样品主要位于楚科奇海台、加拿大海盆、门捷列夫海岭和阿尔法海岭内。深水铁锰样品主要为水生成因,除Mn外,主要有用金属含量均远高于浅水样品,且多种金属与全球重要结核和结壳成矿带内的样品含量相当,展示出一定的资源潜力。深水铁锰样品生长时间长达1500万a,对应着中新世弗拉姆海峡开启,北冰洋开始与北大西洋进行深水交换时期。浅水铁锰样品主要为成岩成因,周边陆源非金属物质的供给量较大,资源潜力低。

  • 加载中
  • 图 1  北极海域内铁锰结核和结壳的分布

    Figure 1. 

    图 2  北极浅水和深水型铁锰结核结壳与世界主要结核结壳赋存区内样品主要有用元素的平均含量对比 (北极海域以外的数据引自[1-2])

    Figure 2. 

    图 3  北极海域内铁锰结核和结壳的稀土元素标准化配分特征(海水数据引自[29])

    Figure 3. 

    图 4  北极海域内铁锰结核结壳样品的成因模式图解(底图修改自[24])

    Figure 4. 

  • [1]

    Hein J R, Koschinsky A. Deep-Ocean Ferromanganese Crusts and Nodules[M]//Turekian K K. Treatise on Geochemistry (Second Edition). Oxford: Elsevier, 2014: 273-291.

    [2]

    Kuhn T, Wegorzewski A, Rühlemann C, et al. Composition, formation, and occurrence of polymetallic nodules[M]//Sharma R. Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations. Cham: Springer International Publishing, 2017: 23-63.

    [3]

    Petersen S,Krätschell A,Augustin N,et al. News from the seabed-geological characteristics and resource potential of deep-sea mineral resources[J]. Marine Policy,2016,70:175-187. doi: 10.1016/j.marpol.2016.03.012

    [4]

    Koschinsky A,Hein J R. Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation[J]. Marine Geology,2003,198(3):331-351.

    [5]

    Koschinsky A,Halbach P. Sequential leaching of marine ferromanganese precipitates: genetic implications[J]. Geochimica et Cosmochimica Acta,1995,59(24):5113-5132. doi: 10.1016/0016-7037(95)00358-4

    [6]

    Hein J R,Mizell K,Koschinsky A,et al. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: comparison with land-based resources[J]. Ore Geology Reviews,2013,51:1-14. doi: 10.1016/j.oregeorev.2012.12.001

    [7]

    许东禹. 大洋矿产地质学[M]. 北京: 海洋出版社, 2013.

    [8]

    Vereshchagin O S,Perova E N,Brusnitsyn A I,et al. Ferro-manganese nodules from the Kara Sea: mineralogy, geochemistry and genesis[J]. Ore Geology Reviews,2019,106:192-204. doi: 10.1016/j.oregeorev.2019.01.023

    [9]

    陈红霞,魏泽勋,于晓果,等. 中国第九次北极科学考察中的意外发现——多金属结核[J]. 海洋学报,2018,40(12):129-130.

    [10]

    Konstantinova N,Hein J,Gartman A,et al. Mineral phase-element associations based on sequential leaching of ferromanganese crusts, Amerasia Basin Arctic Ocean[J]. Minerals,2018,8(460):1-21.

    [11]

    Menendez A,James R,Shulga N,et al. Linkages between the genesis and resource potential of ferromanganese deposits in the Atlantic, Pacific, and Arctic Oceans[J]. Minerals,2018,8(197):1-31.

    [12]

    李院生, 夏立民. 中国第七次北极科学考察报告[M]. 北京: 海洋出版社, 2018.

    [13]

    Hein J R,Konstantinova N,Mikesell M,et al. Arctic deep water ferromanganese-oxide deposits reflect the unique characteristics of the Arctic Ocean[J]. Geochemistry, Geophysics, Geosystems,2017,18:3771-3800. doi: 10.1002/2017GC007186

    [14]

    Konstantinova N,Cherkashov G,Hein J R,et al. Composition and characteristics of the ferromanganese crusts from the western Arctic Ocean[J]. Ore Geology Reviews,2017,87:88-99. doi: 10.1016/j.oregeorev.2016.09.011

    [15]

    Bazilevskaya E S,Skolotnev S G. Fe-Mn nodules of the Mendeleev Ridge,Arctic Ocean[J]. Doklady Earth Sciences,2015,464(2):1015-1017. doi: 10.1134/S1028334X15100189

    [16]

    Dausmann V,Frank M,Siebert C,et al. The evolution of climatically driven weathering inputs into the western Arctic Ocean since the late Miocene:Radiogenic isotope evidence[J]. Earth and Planetary Science Letters,2015,419:111-124. doi: 10.1016/j.jpgl.2015.03.007

    [17]

    Baturin G N,Dubinchuk V T,Ivanov G I,et al. A specific type of Fe-Mn mineralization on the Arctic seafloor[J]. Doklady Earth Sciences,2014,458(2):1191-1196. doi: 10.1134/S1028334X14100031

    [18]

    Hein J R, Spinardi F, Conrad T A, et al. Critical metals in western Arctic Ocean ferromanganese mineral deposits[EB/OL]. [2019-03-01]. https://ui.adsabs.harvard.edu/abs/2013AGUFMOS12B..06H/abstract. 2013.

    [19]

    Kolesnik O N,Kolesnik A N. Specific chemical and mineral composition of ferromanganese nodules from the Chukchi Sea[J]. Russian Geology and Geophysics,2013,54(7):653-663. doi: 10.1016/j.rgg.2013.06.001

    [20]

    Baturin G N. Variations in the composition of the ferromanganese concretions of the Kara Sea[J]. Oceanology,2011,51(1):148-156. doi: 10.1134/S0001437011010012

    [21]

    Winter B L,Johnson C M,Clark D L. Geochemical constraints on the formation of Late Cenozoic ferromanganese micronodules from the central Arctic Ocean[J]. Marine Geology,1997,138(1/2):149-169.

    [22]

    Baturin G N. Distribution of elements in ferromanganese nodules in seas and lakes[J]. Lithology and Mineral Resources,2019,54(5):362-373. doi: 10.1134/S002449021905002X

    [23]

    Bazilevskaya E S,Skolotnev S G. New data on ferromanganese crusts of Mendeleev Rise, Arctic Ocean[J]. Doklady Earth Sciences,2019,486(2):601-604. doi: 10.1134/S1028334X1906014X

    [24]

    Bau M,Schmidt K,Koschinsky A,et al. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium[J]. Chemical Geology,2014,381:1-9. doi: 10.1016/j.chemgeo.2014.05.004

    [25]

    Paul S A L,Volz J B,Bau M,et al. Calcium phosphate control of REY patterns of siliceous-ooze-rich deep-sea sediments from the central equatorial Pacific[J]. Geochimica et Cosmochimica Acta,2019,251:56-72. doi: 10.1016/j.gca.2019.02.019

    [26]

    Liao J L,Sun X M,Wu Z W,et al. Fe-Mn (oxyhydr)oxides as an indicator of REY enrichment in deep-sea sediments from the central North Pacific[J]. Ore Geology Reviews,2019,112:103044. doi: 10.1016/j.oregeorev.2019.103044

    [27]

    Chen J,Algeo T J,Zhao L,et al. Diagenetic uptake of rare earth elements by bioapatite, with an example from Lower Triassic conodonts of South China[J]. Earth-Science Reviews,2015,149:181-202. doi: 10.1016/j.earscirev.2015.01.013

    [28]

    Marcus M A,Toner B M,Takahashi Y. Forms and distribution of Ce in a ferromanganese nodule[J]. Marine Chemistry,2018,202:58-66. doi: 10.1016/j.marchem.2018.03.005

    [29]

    Nozaki Y. A fresh look at element distribution in the North Pacific Ocean[J]. EOS Transactions,1997,78:221-223.

  • 加载中

(4)

计量
  • 文章访问数:  1342
  • PDF下载数:  21
  • 施引文献:  0
出版历程
收稿日期:  2019-12-19
刊出日期:  2020-07-28

目录