海洋浅表层天然气水合物资源评价

孙运宝, 蔡峰, 李清, 闫桂京, 梁杰, 董刚, 骆迪, 李昂, 王星星, 钟伟杰. 海洋浅表层天然气水合物资源评价[J]. 海洋地质前沿, 2020, 36(9): 87-93. doi: 10.16028/j.1009-2722.2020.061
引用本文: 孙运宝, 蔡峰, 李清, 闫桂京, 梁杰, 董刚, 骆迪, 李昂, 王星星, 钟伟杰. 海洋浅表层天然气水合物资源评价[J]. 海洋地质前沿, 2020, 36(9): 87-93. doi: 10.16028/j.1009-2722.2020.061
SUN Yunbao, CAI Feng, LI Qing, YAN Guijing, LIANG Jie, DONG Gang, LUO Di, LI Ang, WANG Xingxing, ZHONG Weijie. EVALUATION OF NATURAL GAS HYDRATE RESOURCES IN SHALLOW MARINE SEDIMENTS[J]. Marine Geology Frontiers, 2020, 36(9): 87-93. doi: 10.16028/j.1009-2722.2020.061
Citation: SUN Yunbao, CAI Feng, LI Qing, YAN Guijing, LIANG Jie, DONG Gang, LUO Di, LI Ang, WANG Xingxing, ZHONG Weijie. EVALUATION OF NATURAL GAS HYDRATE RESOURCES IN SHALLOW MARINE SEDIMENTS[J]. Marine Geology Frontiers, 2020, 36(9): 87-93. doi: 10.16028/j.1009-2722.2020.061

海洋浅表层天然气水合物资源评价

  • 基金项目: 国家重点研发计划(2018YFC0310001);山东省自然科学基金(ZR201807100270)
详细信息
    作者简介: 孙运宝(1983—),男,博士,副研究员,主要从事天然气水合物资源评价方向的研究工作.E-mail: yunbaos@sina.com
  • 中图分类号: P744;P618.13

EVALUATION OF NATURAL GAS HYDRATE RESOURCES IN SHALLOW MARINE SEDIMENTS

  • 浅表层天然气水合物具有埋藏浅、厚度大、纯度高等特点。现有的评价方法多针对于具有明显BSR反射特征的中深层天然气水合物,而对浅表层天然气水合物的相关研究鲜有发表。本研究通过对国内外浅表层水合物发育区广泛调研,以浅表层水合物的形成机理为基础,探究水合物资源评价方法的选择;以水合物空间展布规律为参考,明确评价范围界定条件;以综合指示特征为参考,分析评价参数的选取依据。并在此基础上,与中深层天然气水合物进行对比,提出浅表层天然气水合物资源刻度区选取及解剖的初步建议,引出评价中存在的问题,梳理出浅表层天然气水合物的资源评价方法的关键问题。

  • 加载中
  • 图 1  资源评价技术路线

    Figure 1. 

    表 1  浅表层天然气水合物刻度区地质评价参数

    Table 1.  Geological evaluation parameters for shallow gas hydrate calibrated unit

    参数类型 参数名称 参数类型 参数名称
    气源条件 有机质类型 储集条件 沉积速率
    有机质丰度(TOC) 砂泥比
    天然气类型 盐度
    供烃方式 地温梯度
    甲烷通量 稳定带底界
    岩性 GH厚度
    地层温度 SMI深度
    地层压力 沉积相类型
    输导条件 通道位置 孔隙度
    通道类型 饱和度
    运移方式 渗透率
    运移距离 储集空间类型
    下载: 导出CSV

    表 2  海洋浅表层天然气水合物与常规油气及中深层水合物资源评价对比

    Table 2.  Comparison of resources evaluation among shallow gas hydrate,medium-deep gas hydrate and the conventional oil and gas

    常规油气资源 海洋天然气水合物资源
    浅表层水合物 中深层水合物
    分布特征 离散型,有明显圈闭界限 离散型,无明显圈闭界限 连续型,无明显圈闭界限
    构造位置 背斜等正向构造 渗漏构造区 斜坡为主
    聚集机制 浮力运聚为主 渗漏为主、温压条件 扩散为主、温压条件
    源储关系 源储分离 源储分离 源储分离/源储一体
    勘探目标 有利圈闭 甜点区 甜点区
    目标深度 深部 浅部:一般不超过100 mbsf,50 mbsf左右 浅部:一般不超过600 mbsf,200 mbsf左右
    评价重点 生、储、盖、圈、运、保及匹配关系 温压条件、气源条件、输导条件、储集条件及匹配关系
    下载: 导出CSV
  • [1]

    蔡 峰,闫桂京,梁 杰,等. 大陆边缘特殊地质体与水合物形成的关系[J]. 海洋地质前沿,2011,27(6):11-15.

    [2]

    李 清,王家生,蔡 峰,等. 天然气水合物系统多幕次甲烷渗漏作用的底栖有孔虫同位素响应——以IODP311航次为例[J]. 海洋地质前沿,2011,27(6):29-36.

    [3]

    Liang J Q,Zhang W,Lu J A,et al. Geological occurrence and accumulation mechanism of natural gas hydrates in the eastern Qiongdongnan Basin of the South China Sea:Insights from site GMGS5-W9-2018[J]. Marine Geology,2019,418(106042):1-19.

    [4]

    Matsumoto R,Tanahashi M,Kakuwa Y,et al. Recovery of thick deposits of massive gas hydrates from gas chimney structures,eastern margin of Japan Sea:Japan Sea shallow gas hydrate project[J]. Fire in the Ice,2017,17(1):1-22.

    [5]

    Wang X J,Liu B,Qian J,et al. Geophysical evidence for gas hydrate accumulation related to methane seepage in the Taixinan Basin,South China Sea[J]. Journal of Asian Earth Sciences,2017,168:27-37.

    [6]

    Milkov A V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates[J]. Marine Geology,2000,167:29-42. doi: 10.1016/S0025-3227(00)00022-0

    [7]

    Mazurenko L L,Soloviev V A. Worldwide distribution of deep-water fluid venting and potential occurrences of gas hydrate accumulations[J]. Geo-Marine Letters,2003,23:162-176. doi: 10.1007/s00367-003-0146-x

    [8]

    刘玉山,祝有海,吴必豪. 更具开发前景的浅成天然气水合物[J]. 海洋地质前沿,2016,32(4):24-30.

    [9]

    Mishra C K,Dewangan P,Sriram G. Spatial distribution of gas hydrate deposits in Krishna-Godavari offshore basin,Bay of Bengal[J]. Marine and Petroleum Geology,2020,112(104037):1-13.

    [10]

    Joshu J M,Ingo P,Stuart H,et al. Shallow methane hydrate system controls ongoing,downslope sediment transport in a low-velocity active submarine landslide complex,Hikurangi Margin,New Zealand[J]. Geochemistry,Geophysics,Geosystems,2014,15:4137-4156.

    [11]

    Milkov A V,Sassen R,Panasovich T V A,et al. Global gas flux from mud volcanoes:A significant source of fossil methane in the atmosphere and the ocean[J]. Geophysical Research Letters,2003,30(2):1-4.

    [12]

    Reagan M T,Moridis G J,Elliot S M,et al. Contribution of oceanic gas hydrate dissociation to the formation of Arctic Ocean methane plumes[J]. Journal of Geophysical Research,2011,116(C09014):1-11.

    [13]

    Romer M,Sahling H,Pape T,et al. Geological control and magnitude of methane ebullition from a high-flux seep area in the Black Sea-the Kerch seep area[J]. Marine Geology,2012,319-322:57-74. doi: 10.1016/j.margeo.2012.07.005

    [14]

    孙运宝,赵铁虎,蔡 峰. 国外海域天然气水合物资源量评价方法对我国的启示[J]. 海洋地质前沿,2013,29(1):27-35.

    [15]

    吴能友,梁金强,王宏斌,等. 海洋天然气水合物成藏系统研究进展[J]. 现代地质,2008,22(3):356-362. doi: 10.3969/j.issn.1000-8527.2008.03.003

    [16]

    陈多福, 冯 东, Cathles L M. 海底天然气渗漏系统水合物成藏动力学及其资源评价方法[J]. 大地构造与成矿学, 2005, 29(2): 278-284.

    [17]

    Wei J G,Pape T,Sultan T,et al. Gas hydrate distributions in sediments of pockmarks from the Nigerian margin-Results and interpretation from shallow drilling[J]. Marine and Petroleum Geology,2015,59:359-370. doi: 10.1016/j.marpetgeo.2014.09.013

    [18]

    You K,Flemings P B,Malinverno A,et al. Mechanisms of methane hydrate formation in geological systems[J]. Reviews of Geophysics,2019,57:1146-1196. doi: 10.1029/2018RG000638

    [19]

    Waage M,Portnov A,Serov P,et al. Geological controls on fluid flow and gas hydrate pingo development on the Barents Sea margin[J]. Geochemistry,Geophysics,Geosystems,2019,20:630-650.

    [20]

    Dewangan P,Ramprasad T,Ramana M V,et al. Seabed morphology and gas venting features in the continental slope region of Krishnae Godavari basin,Bay of Bengal:implications in gas-hydrate exploration[J]. Marine and Petroleum Geology,2010,27:1628-1641. doi: 10.1016/j.marpetgeo.2010.03.015

    [21]

    Matveeva T,Weering T C E,Stadnitskaia A. Gas hydrate accumulation associated to the Bonjardim mud volcano (Gulf of Cadiz) mechanisms of formation,thermal models,quantitative gas budget estimations[J]. Geophysical Research Abstracts,2018(10):EGU2008-A-07615.

    [22]

    Wood W T, Gettrust J F, Chapman N R, et al. Decreased stability of methane hydrates in marine sediments owing to phase-boundary roughness [J]. Nature, 2002, 420(6916): 656-660.

    [23]

    Paganoni M,Cartwright J A,Foschi M,et al. Relationship between fluid-escape pipes and hydrate distribution in offshore Sabah (NW Borneo)[J]. Marine Geology,2018,295:82-103.

    [24]

    Willoughby E C,Latychev K,Edwards R N,et al. Seafloor compliance imaging of marine gas hydrate deposits and cold vent structures[J]. Journal of Geophysical Research,2008,113(B07107):1-10.

    [25]

    Attias E,Amalokwu K,Wattsa M,et al. Gas hydrate quantification at a pockmark offshore Norway from joint effective medium modeling of resistivity and seismic velocity[J]. Marine and Petroleum Geology,2020,113(104151):1-17.

    [26]

    Milkov A V,Sassen R. Estimate of gas hydrate resource,northwestern Gulf of Mexico continental slope[J]. Marine Geology,2001,179:71-83. doi: 10.1016/S0025-3227(01)00192-X

    [27]

    Trehu A M,Long P E,Torres M E,et al. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge:constraints from ODP Leg 204[J]. Earth and Planetary Science Letters,2004,222:845-862. doi: 10.1016/j.jpgl.2004.03.035

    [28]

    Majumdar U,Cook A E. The volume of gas hydrate‐bound gas in the northern Gulf of Mexico[J]. Geochemistry,Geophysics,Geosystems,2018,19:4313-4328.

    [29]

    Wallmann K,Pinero E,Burwicz E,et al. The global inventory of methane hydrate in marine sediments:A theoretical approach[J]. Energies,2012,5:2449-2498. doi: 10.3390/en5072449

    [30]

    Pinero E,Marquardt M,Hensen C,et al. Estimation of the global inventory of methane hydrates in marine sediments using transfer functions[J]. Biogeosciences,2013,10:959-975. doi: 10.5194/bg-10-959-2013

    [31]

    Zhostkov R A,Sobisevich A L,Suetnova E I. Mathematical model of accumulation of gas hydrates associated with deep-sea mud volcanoes[J]. Doklady Earth Sciences,2017,474(1):604-606. doi: 10.1134/S1028334X17050282

    [32]

    Pinero E,Hensen C,Haeckel M,et al. 3-D numerical modelling of methane hydrate accumulations using PetroMod[J]. Marine and Petroleum Geology,2016,71:288-295. doi: 10.1016/j.marpetgeo.2015.12.019

    [33]

    US Bureau of Mines, US Geological Survey. Principles of a resource/ reserve classification for minerals[S]. US Geological Survey, 1980, Circular 831.

    [34]

    Max M,Johnson A. Hydrate petroleum system approach to natural gas hydrates exploration[J]. Petroleum Geoscience,2014,20:187-199. doi: 10.1144/petgeo2012-049

    [35]

    Yi B Y,Lee,G H,Kang N K,et al. Deterministic estimation of gas-hydrate resource volume in a small area of the Ulleung Basin,East Sea (Japan Sea) from rock physics modeling and pre-stack inversion[J]. Marine and Petroleum Geology,2018,92:597-608. doi: 10.1016/j.marpetgeo.2017.11.023

    [36]

    Kioka A,Tsuji T,Otsuka H,et al. Methane concentration in mud conduits of submarine mud volcanoes:A coupled geochemical and geophysical approach[J]. Geochemistry,Geophysics,Geosystems,2019,20:792-813.

    [37]

    Snyder G,Sano Y,Takahata N,et al. Magmatic fluids play a role in the development of active gas chimneys and massive gas hydrates in the Japan Sea[J]. Chemical Geology,2020,535(119462):1-12.

    [38]

    Pape T,Geprags P,Hammerschmidt S,et al. Hydrocarbon seepage and its sources at mud volcanoes of the Kumano forearc basin,Nankai Trough subduction zone[J]. Geochemical,Geophysics,Geosystems,2014,15:2180-2194.

    [39]

    Suetnova E I. Numerical simulation of accumulation of gas hydrates during sedimentation and compaction of sediments under subaqueous conditions[J]. Physics of the Solid Earth,2007,43(9):791-797. doi: 10.1134/S106935130709008X

    [40]

    Berndt C,Chi W C,Jegen M,et al. Tectonic controls on gas hydrate distribution off SW Taiwan[J]. Journal of Geophysical Research:Solid Earth,2019,124:1164-1184. doi: 10.1029/2018JB016213

    [41]

    Bui H,Dvorkin J,Nur A. Subsurface fluid flow and its implications for seabed pockmarks and mud volcanoes: An approach of distinct element method (DEM)[J]. SEG Technical Program Expanded Abstracts,2007,26(1):2055-2059.

    [42]

    Leon R,Somoza L,Gimenez-Moreno C J,et al. A predictive numerical model for potential mapping of the gas hydrate stability zone in the Gulf of Cadiz[J]. Marine and Petroleum Geology,2009,26:1564-1579. doi: 10.1016/j.marpetgeo.2009.01.016

    [43]

    Sahling H,Bohrmann G,Artemov Y G,et al. Vodyanitskii mud volcano,Sorokin trough,Black Sea:Geological characterization and quantification of gas bubble streams[J]. Marine and Petroleum Geology,2009,26:1799-1811. doi: 10.1016/j.marpetgeo.2009.01.010

  • 加载中

(1)

(2)

计量
  • 文章访问数:  1393
  • PDF下载数:  17
  • 施引文献:  0
出版历程
收稿日期:  2020-05-28
刊出日期:  2020-09-28

目录