海域天然气水合物资源开采新技术展望

陈强, 胡高伟, 李彦龙, 万义钊, 刘昌岭, 吴能友, 刘洋. 海域天然气水合物资源开采新技术展望[J]. 海洋地质前沿, 2020, 36(9): 44-55. doi: 10.16028/j.1009-2722.2020.081
引用本文: 陈强, 胡高伟, 李彦龙, 万义钊, 刘昌岭, 吴能友, 刘洋. 海域天然气水合物资源开采新技术展望[J]. 海洋地质前沿, 2020, 36(9): 44-55. doi: 10.16028/j.1009-2722.2020.081
CHEN Qiang, HU Gaowei, LI Yanlong, WAN Yizhao, LIU Changling, WU Nengyou, LIU Yang. A PROSPECT REVIEW OF NEW TECHNOLOGY FOR DEVELOPMENT OF MARINE GAS HYDRATE RESOURCES[J]. Marine Geology Frontiers, 2020, 36(9): 44-55. doi: 10.16028/j.1009-2722.2020.081
Citation: CHEN Qiang, HU Gaowei, LI Yanlong, WAN Yizhao, LIU Changling, WU Nengyou, LIU Yang. A PROSPECT REVIEW OF NEW TECHNOLOGY FOR DEVELOPMENT OF MARINE GAS HYDRATE RESOURCES[J]. Marine Geology Frontiers, 2020, 36(9): 44-55. doi: 10.16028/j.1009-2722.2020.081

海域天然气水合物资源开采新技术展望

  • 基金项目: 国家重点研发计划“水合物试采、环境监测及综合评价应用示范”(2017YFC0307600);中国地质调查局项目(DD20190231)
详细信息
    作者简介: 陈 强(1980—),男,博士,高级工程师,主要从事天然气水合物勘查与开发基础理论研究工作. E-mail: chenqiang_hds@126.com
    通讯作者: 刘昌岭(1966—),男,博士,研究员,博士生导师,主要从事天然气水合物勘查开发模拟实验研究工作. E-mail: qdliuchangling@163.com
  • 中图分类号: P744;P618.13

A PROSPECT REVIEW OF NEW TECHNOLOGY FOR DEVELOPMENT OF MARINE GAS HYDRATE RESOURCES

More Information
  • 随着全球海域天然气水合物资源勘探工作的深入和油气开发技术装备水平的提升,深水浅层天然气水合物资源商业化开采的前景逐渐明晰。自2013年开始,日本、中国相继进行了多次海域水合物试开采尝试,连续产气时间、累计产气量和日均产气量逐步获得提升。2020年中国率先实现了从“探索性试采”向“试验性试采”的跨越。然而,以“降压”为核心理念的开采技术单井产气量瓶颈明显,制约了水合物资源产业化发展进程,必须在已有技术方法基础上创新发展,形成高效、安全、经济的海域天然气水合物资源开采专有技术体系。笔者梳理了近年来海域天然气水合物开采技术研发领域内的新进展,分析了包括“原位分解采气”和“原位破碎抽取”两大开采框架指导下,多种开采技术的创新升级进展和存在的主要问题,在此基础上展望了未来海域天然气水合物资源开采技术的研发方向。

  • 加载中
  • 图 1  日本南海海槽水合物垂直井开采(据文献[34])

    Figure 1. 

    图 2  天然气水合物多分支井开采结构设计示意图(据文献[37])

    Figure 2. 

    图 3  水合物开采储层改造效果示意图(据文献[41])

    Figure 3. 

    图 4  CO2水合物人工盖层储层改造示意图(据文献[42])

    Figure 4. 

    图 5  含水合物沉积物工程静探参数模拟实验系统

    Figure 5. 

    图 6  水合物地层稳定性多场耦合数值模拟软件框架(据文献[46])

    Figure 6. 

    图 7  双梯度钻井工程示意图(据文献[48])

    Figure 7. 

    图 8  不同热激发手段开采海域天然气水合物(据文献[28])

    Figure 8. 

    图 9  射频/微波电解等离子体水合物开采技术示意图(据文献[58])

    Figure 9. 

    图 10  自生热注剂分解孔隙充填型天然气水合物(据文献[63])

    Figure 10. 

    图 11  水合物原位补热降压充填开采(据文献[64])

    Figure 11. 

    图 12  联合深层地热资源的甲烷开采法(据文献[53])

    Figure 12. 

    图 13  CO2-H2混合气体置换开采系统示意图(据文献[10])

    Figure 13. 

    图 14  天然气水合物固态流化开采系统(据文献[30])

    Figure 14. 

    图 15  天然气水合物机械-热联合开采示意图(据文献[29])

    Figure 15. 

  • [1]

    Yin Z Y,Linga P. Methane hydrates:A future clean energy resource[J]. Chinese Journal of Chemical Engineering,2019,27(9):2026-2036. doi: 10.1016/j.cjche.2019.01.005

    [2]

    Collett T,Bahk J J,Baker R,et al. Methane Hydrates in Nature-Current Knowledge and Challenges[J]. Journal of Chemical & Engineering Data,2015,60(2):319-329.

    [3]

    Boswell R, Hancock S, Yamamoto K, et al. "6 - natural gas hydrates: Status of potential as an energy resource, " in future energy (Third Edition)[M]// Letcher M, Ed. Elsevier, 2020: 111-131.

    [4]

    Sloan E D,Dekker M J. Clathrate hydrates of natural gases,second edition,revised and expanded[J]. Structural Chemistry,1999,10(1):73.

    [5]

    Behera S R,Dash D P. The effect of urbanization,energy consumption,and foreign direct investment on the carbon dioxide emission in the SSEA (South and Southeast Asian) region[J]. Renewable and Sustainable Energy Reviews,2017,70:96-106.

    [6]

    Song Y,Yang L,Zhao J,et al. The status of natural gas hydrate research in China:A review[J]. Renewable and Sustainable Energy Reviews,2014,31:778-791. doi: 10.1016/j.rser.2013.12.025

    [7]

    张 伟,梁金强,陆敬安,等. 中国南海北部神狐海域高饱和度天然气水合物成藏特征及机制[J]. 石油勘探与开发,2017,44(5):670-680.

    [8]

    梁金强,张光学,陆敬安,等. 南海东北部陆坡天然气水合物富集特征及成因模式[J]. 新能源,2016,36(10):157-162.

    [9]

    吴能友,黄 丽,胡高伟,等. 海域天然气水合物开采的地质控制因素和科学挑战[J]. 海洋地质与第四纪地质,2017,37(5):1-11.

    [10]

    Li F G,Yuan Q,Li T D,et al. A review:Enhanced recovery of natural gas hydrate reservoirs[J]. Chinese Journal of Chemical Engineering,2018,27(9):2062-2073.

    [11]

    Yang L,Liu Y L,Zhang H Q,et al. The status of exploitation techniques of natural gas hydrate[J]. Chinese Journal of Chemical Engineering,2019,27:2133-2147. doi: 10.1016/j.cjche.2019.02.028

    [12]

    Ryu B J,Collett T S,Riedel M,et al. Scientific results of the Second Gas Hydrate Drilling Expedition in the Ulleung Basin (UBGH2)[J]. Marine and Petroleum Geology,2013,47:1-20. doi: 10.1016/j.marpetgeo.2013.07.007

    [13]

    Moridis G J,Silpngarmlert S,Reagan M T,et al. Gas production from a cold,stratigraphically-bounded gas hydrate deposit at the Mount Elbert Gas Hydrate Stratigraphic Test Well,Alaska North Slope:Implications of uncertainties[J]. Marine and Petroleum Geology,2011,28(2):517-534. doi: 10.1016/j.marpetgeo.2010.01.005

    [14]

    Boswell R,Collett T S,Frye M,et al. Subsurface gas hydrates in the northern Gulf of Mexico[J]. Marine and Petroleum Geology,2012,34(1):4-30. doi: 10.1016/j.marpetgeo.2011.10.003

    [15]

    Lu H L,Lorenson T D,Moudrakovski I L,et al. The characteristics of gas hydrates recovered from the Mount Elbert Gas Hydrate Stratigraphic Test Well,Alaska North Slope[J]. Marine and Petroleum Geology,2011,28(2):411-418. doi: 10.1016/j.marpetgeo.2010.01.002

    [16]

    Qian J,Wang X J,Collett T S,et al. Downhole log evidence for the coexistence of structure Ⅱ gas hydrate and free gas below the bottom simulating reflector in the South China Sea[J]. Marine and Petroleum Geology,2018,98:662-674. doi: 10.1016/j.marpetgeo.2018.09.024

    [17]

    Collett T S,Boswell R,Waite W F,et al. India National Gas Hydrate Program Expedition 02 Summary of Scientific Results:Gas hydrate systems along the eastern continental margin of India[J]. Marine and Petroleum Geology,2019,108:39-142. doi: 10.1016/j.marpetgeo.2019.05.023

    [18]

    Kret K,Tsuji T,Chhun C,et al. Distributions of gas hydrate and free gas accumulations associated with upward fluid flow in the Sanriku-Oki forearc basin,northeast Japan[J]. Marine and Petroleum Geology,2020,116:104305. doi: 10.1016/j.marpetgeo.2020.104305

    [19]

    Liu L P,Sun Z L,Zhang L,et al. Progress in global gas hydrate development and production as a new energy resource[J]. Acta Geologica Sinica (English edition),2019,93(3):731-755. doi: 10.1111/1755-6724.13876

    [20]

    Lee J Y,Ryu B J,Yun T S,et al. Review on the gas hydrate development and production as a new energy resource[J]. Ksce Journal of Civil Engineering,2011,15(4):689-696. doi: 10.1007/s12205-011-0009-3

    [21]

    Seol J,Lee H. Natural gas hydrate as a potential energy resource:From occurrence to production[J]. Korean Journal of Chemical Engineering,2013,30(4):771-786. doi: 10.1007/s11814-013-0033-8

    [22]

    Li J F,Ye J L,Qin X W,et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology,2018,1:5-16. doi: 10.31035/cg2018003

    [23]

    Collett T S,Johnson A H,Knapp C C,et al. Natural gas hydrates - a review[J]. Browse Collections,2009,89:146-219.

    [24]

    Uddin M,Wright F,Dallimore S,et al. Gas hydrate dissociations in Mallik hydrate bearing zones A,B,and C by depressurization:Effect of salinity and hydration number in hydrate dissociation[J]. Journal of Natural Gas Science and Engineering,2014,21:40-63. doi: 10.1016/j.jngse.2014.07.027

    [25]

    Yu T,Guan G Q,Abudula A. Production performance and numerical investigation of the 2017 offshore methane hydrate production test in the Nankai Trough of Japan[J]. Applied Energy,2019,251:113338. doi: 10.1016/j.apenergy.2019.113338

    [26]

    Fujii T,Suzuki K,Takayama T,et al. Geological setting and characterization of a methane hydrate reservoir distributed at the first offshore production test site on the Daini-Atsumi Knoll in the eastern Nankai Trough,Japan[J]. Marine and Petroleum Geology,2015,66:310-322. doi: 10.1016/j.marpetgeo.2015.02.037

    [27]

    Li X S,Xu C G,Zhang Y,et al. Investigation into gas production from natural gas hydrate:A review[J]. Applied Energy,2016,172:286-322. doi: 10.1016/j.apenergy.2016.03.101

    [28]

    Liang Y P,Tan Y T,Luo Y J,et al. Progress and challenges on gas production from natural gas hydrate-bearing sediment[J]. Journal of Cleaner Production,2020,261:121061. doi: 10.1016/j.jclepro.2020.121061

    [29]

    张旭辉,鲁晓兵. 一种新的海洋浅层水合物开采法[J]. 力学学报,2016,48(5):1238-1246. doi: 10.6052/0459-1879-15-112

    [30]

    周守为,陈 伟,李清平,等. 深水浅层非成岩天然气水合物固态流化试采技术研究及进展[J]. 中国海上油气,2017,29(4):1-8.

    [31]

    Guo B Y, Liu X H, Tan X H. "Chapter 18 - Other artificial lift methods, " in petroleum production engineering (Second Edition)[M]// Guo B, Liu X, Tan X, Eds. Boston: Gulf Professional Publishing, 2017: 603-635.

    [32]

    Bellarby J. "Chapter 6 Artificial Lift, " in Developments in Petroleum Science[M]. Elsevier, 2009, 56: 303-369.

    [33]

    Yamamoto K, Terao Y, Fujii T, et al. Operational overview of the first offshore production test of methane hydrates in the Eastern Nankai Trough[C]// Offshore Technology Conference, 2014.

    [34]

    魏 伟,张金华,于荣泽,等. 2017年天然气水合物研发热点回眸[J]. 科技导报,2018,36(1):83-90.

    [35]

    卢秋平. 深水天然气水合物连续管水平井钻井井筒多相流动规律研究[J]. 中国石油和化工标准与质量,2019,39(5):70-71,74.

    [36]

    魏 纳. 海洋天然气水合物层钻水平井不同扩径方式携岩能力图版[J]. 石油钻采工艺,2019,41(4):435-440.

    [37]

    Li Y L. Large borehole with multi-lateral branches:A novel solution for exploitation of clayey silt hydrate[J]. China Geology,2019,2(3):333-341.

    [38]

    李 楠,王晓辉,吕一宁,等. 天然气水合物开发面临的挑战及关键技术[J]. 石油科学通报,2016,1(1):171-174.

    [39]

    Sun Y, Wang Y, Zhong J, et al. Gas hydrate exploitation using CO2/H2 mixture gas by semi-continuous injection-production mode [J]. Applied Energy, 2019, 240: 215-225.

    [40]

    潘栋彬,陈 晨,杨 林,等. 水射流破碎南海含水合物沉积物数值模拟研究[J]. 探矿工程(岩土钻掘工程),2018,45(10):27-31.

    [41]

    Feng Y C,Chen L,Suzuki A,et al. Enhancement of gas production from methane hydrate reservoirs by the combination of hydraulic fracturing and depressurization method[J]. Energy Conversion and Management,2019,184:194-204. doi: 10.1016/j.enconman.2019.01.050

    [42]

    Li N,Sun Z F,Jia S,et al. A novel method to greatly increase methane hydrate exploitation efficiency via forming impermeable overlying CO2 cap[J]. Energy Procedia,2019,158:5975-5981. doi: 10.1016/j.egypro.2019.01.523

    [43]

    李彦龙,刘昌岭,刘乐乐,等. 含甲烷水合物松散沉积物的力学特性[J]. 中国石油大学学报(自然科学版),2017,41(3):105-113.

    [44]

    Li Y L,Liu C L,Liu L L,et al. Experimental study on evolution behaviors of triaxial-shearing parameters for hydrate-bearing intermediate fine sediment[J]. Advances in Geo-Energy Research,2018,2(1):43-52. doi: 10.26804/ager.2018.01.04

    [45]

    Wan Y Z,Wu N Y,Hu G W,et al. Reservoir stability in the process of natural gas hydrate production by depressurization in the shenhu area of the south China sea[J]. Natural Gas Industry B,2018,5(6):631-643. doi: 10.1016/j.ngib.2018.11.012

    [46]

    万义钊,吴能友,胡高伟,等. 南海神狐海域天然气水合物降压开采过程中储层的稳定性[J]. 天然气工业,2018,38(4):117-128. doi: 10.3787/j.issn.1000-0976.2018.04.014

    [47]

    陈国明,殷志明,许亮斌,等. 深水双梯度钻井技术研究进展[J]. 石油勘探与开发,2007,34(2):246-251. doi: 10.3321/j.issn:1000-0747.2007.02.023

    [48]

    王国荣,钟 林,刘清友,等. 基于双层管双梯度深海油气及水合物开发技术研究[J]. 海洋工程装备与技术,2019,6(S1):225-233.

    [49]

    Li B,Liu S D,Liang Y P,et al. The use of electrical heating for the enhancement of gas recovery from methane hydrate in porous media[J]. Applied Energy,2018,227:694-702. doi: 10.1016/j.apenergy.2017.08.066

    [50]

    Chong Z R,Yang S H B,Babu P,et al. Review of natural gas hydrates as an energy resource:Prospects and challenges[J]. Applied Energy,2016,162:1633-1652. doi: 10.1016/j.apenergy.2014.12.061

    [51]

    Minagawa H,Ito T,Kimura S,et al. Depressurization and electrical heating of methane hydrate sediment for gas production:Laboratory-scale experiments[J]. Journal of Natural Gas Science and Engineering,2018,50:147-156. doi: 10.1016/j.jngse.2017.10.024

    [52]

    Zhao J F,Fan Z,Wang B,et al. Simulation of microwave stimulation for the production of gas from methane hydrate sediment[J]. Applied Energy,2016,168:25-37. doi: 10.1016/j.apenergy.2016.01.091

    [53]

    孙致学,朱旭晨,刘 垒,等. 联合深层地热甲烷水合物开采方法及可行性评价[J]. 海洋地质与第四纪地质,2019,39(2):146-156.

    [54]

    宋永臣,李红海,王志国. 太阳能加热开采天然气水合物研究[J]. 大连理工大学学报,2009,49(6):827-831. doi: 10.7511/dllgxb200906009

    [55]

    Li G,Moridis G J,Zhang K,et al. The use of huff and puff method in a single horizontal well in gas production from marine gas hydrate deposits in the Shenhu Area of South China Sea[J]. Journal of Petroleum Science and Engineering,2011,77(1):49-68. doi: 10.1016/j.petrol.2011.02.009

    [56]

    王志刚,张永勤,梁 健,等. SAGD技术应用于陆域冻土天然气水合物开采中的理论研究[J]. 探矿工程(岩土钻掘工程),2017,44(5):14-18.

    [57]

    Wang B,Dong H S,Fan Z,et al. Numerical analysis of microwave stimulation for enhancing energy recovery from depressurized methane hydrate sediments[J]. Applied Energy,2020,262:114559. doi: 10.1016/j.apenergy.2020.114559

    [58]

    Rahim I,Nomura S,Mukasa S,et al. Decomposition of methane hydrate for hydrogen production using microwave and radio frequency in-liquid plasma methods[J]. Applied Thermal Engineering,2015,90:120-126. doi: 10.1016/j.applthermaleng.2015.06.074

    [59]

    Putra A E E,Nomura S,Mukasa S,et al. Hydrogen production by radio frequency plasma stimulation in methane hydrate at atmospheric pressure[J]. International Journal of Hydrogen Energy,2012,37(21):16000-16005. doi: 10.1016/j.ijhydene.2012.07.099

    [60]

    Cranganu C. In-situ thermal stimulation of gas hydrates[J]. Journal of Petroleum Science and Engineering,2009,65(1):76-80.

    [61]

    Aminnaji M,Tohidi B,Burgass R,et al. Effect of injected chemical density on hydrate blockage removal in vertical pipes:Use of MEG/MeOH mixture to remove hydrate blockage[J]. Journal of Natural Gas Science and Engineering,2017,45:840-847. doi: 10.1016/j.jngse.2017.06.030

    [62]

    Aminnaji M,Tohidi B,Burgass R,et al. Gas hydrate blockage removal using chemical injection in vertical pipes[J]. Journal of Natural Gas Science and Engineering,2017,40:17-23. doi: 10.1016/j.jngse.2017.02.003

    [63]

    Liu S,Zhang Y Y,Luo Y J,et al. Analysis of hydrate exploitation by a new in-situ heat generation method with chemical reagents based on heat utilization[J]. Journal of Cleaner Production,2020,249:119399. doi: 10.1016/j.jclepro.2019.119399

    [64]

    李守定,李 晓,王思敬,等. 天然气水合物原位补热降压充填开采方法[J]. 工程地质学报,2020,28(2):282-293.

    [65]

    刘昌岭,李彦龙,孙建业,等. 天然气水合物试采:从实验模拟到场地实施[J]. 海洋地质与第四纪地质,2017,37(5):12-26.

    [66]

    Xu C G,Cai J,Yu Y S,et al. Research on micro-mechanism and efficiency of CH4 exploitation via CH4-CO2 replacement from natural gas hydrates[J]. Fuel,2018,216:255-265. doi: 10.1016/j.fuel.2017.12.022

    [67]

    Merey S,Al-Raoush R I,Jung J,et al. Comprehensive literature review on CH4-CO2 replacement in microscale porous media[J]. Journal of Petroleum Science and Engineering,2018,171:48-62. doi: 10.1016/j.petrol.2018.07.032

    [68]

    Wang X H,Sun Y F,Wang Y F,et al. Gas production from hydrates by CH4-CO2/H2 replacement[J]. Applied Energy,2017,188:305-314. doi: 10.1016/j.apenergy.2016.12.021

    [69]

    龚建明,廖 晶,尹维翰,等. 北印度洋马克兰增生楔天然气水合物的成藏模式[J]. 海洋地质与第四纪地质,2018,38(2):148-155.

    [70]

    李 进,王淑红,颜 文. 海底泥火山及其与油气和天然气水合物的关系[J]. 海洋地质与第四纪地质,2017,37(6):204-214.

    [71]

    刘 杰,孙美静,杨 睿,等. 泥底辟输导流体机制及其与天然气水合物成藏的关系[J]. 现代地质,2016,30(6):1399-1407. doi: 10.3969/j.issn.1000-8527.2016.06.022

    [72]

    Boswell R,Collett T. The Gas Hydrates Resource Pyramid[J]. Fire in the Ice,2006:6.

    [73]

    Zhou S W,Zhao J Z,Li Q P,et al. Optimal design of the engineering parameters for the first global trial production of marine natural gas hydrates through solid fluidization[J]. Natural Gas Industry B,2018,5(2):118-131. doi: 10.1016/j.ngib.2018.01.004

  • 加载中

(15)

计量
  • 文章访问数:  1881
  • PDF下载数:  31
  • 施引文献:  0
出版历程
收稿日期:  2020-06-10
刊出日期:  2020-09-28

目录