巴伦支海西南部天然气水合物形成与分解影响因素

耿威, 孙治雷, 吴能友, 曹红, 张喜林, 王利波, 张现荣, 徐翠玲, 翟滨. 巴伦支海西南部天然气水合物形成与分解影响因素[J]. 海洋地质前沿, 2020, 36(9): 109-120. doi: 10.16028/j.1009-2722.2020.103
引用本文: 耿威, 孙治雷, 吴能友, 曹红, 张喜林, 王利波, 张现荣, 徐翠玲, 翟滨. 巴伦支海西南部天然气水合物形成与分解影响因素[J]. 海洋地质前沿, 2020, 36(9): 109-120. doi: 10.16028/j.1009-2722.2020.103
GENG Wei, SUN Zhilei, WU Nengyou, CAO Hong, ZHANG Xilin, WANG Libo, ZHANG Xianrong, XU Cuiling, ZHAI Bin. INFLUENCE FACTORS FOR GAS HYDRATE FORMATION AND DECOMPOSITION IN SOUTHWEST BARENTS SEA: A REVIEW[J]. Marine Geology Frontiers, 2020, 36(9): 109-120. doi: 10.16028/j.1009-2722.2020.103
Citation: GENG Wei, SUN Zhilei, WU Nengyou, CAO Hong, ZHANG Xilin, WANG Libo, ZHANG Xianrong, XU Cuiling, ZHAI Bin. INFLUENCE FACTORS FOR GAS HYDRATE FORMATION AND DECOMPOSITION IN SOUTHWEST BARENTS SEA: A REVIEW[J]. Marine Geology Frontiers, 2020, 36(9): 109-120. doi: 10.16028/j.1009-2722.2020.103

巴伦支海西南部天然气水合物形成与分解影响因素

  • 基金项目: 中国地质调查局项目(DD20190819);国家自然科学基金“冲绳海槽海底冷泉-热液系统相互作用及资源效应”(91858208);国家重点研发计划课题“水合物泄露流体原位监测技术与装置”(2017YFC0307704);国家重点研发计划课题“水合物试采环境监测技术应用示范”(2017YFC0307605)
详细信息
    作者简介: 耿 威(1983—),女,博士,助理研究员,主要从事海洋地质构造与水合物环境效应研究. E-mail: gengwei0128@aliyun.com
    通讯作者: 孙治雷(1975—),男,博士,副研究员,主要从事深海矿产资源勘探与海洋地球化学研究. E-mail: zhileisun@yeah.net
  • 中图分类号: P744;P618.13

INFLUENCE FACTORS FOR GAS HYDRATE FORMATION AND DECOMPOSITION IN SOUTHWEST BARENTS SEA: A REVIEW

More Information
  • 北极海域赋存丰富的油气和天然气水合物资源,也是全球环境变化的一个重要窗口,北极巴伦支海西南部陆架已发现大量天然气水合物赋存的识别标志,笔者综述了巴伦支海西南部海域陆架区水合物形成的条件和已发现的天然气水合物分布情况和泄漏特征,总结影响巴伦支海西南陆架区天然气水合物形成和分解的各项因素,评价北极巴伦支海西南部天然气水合物资源前景。掌握北极巴伦支海及其周边区域的水合物资源情况是提升中国在北极事务话语权的必要内容之一,北极海域水合物动态变化对于全球气候变化具有十分重要的指导意义;这类极地低温海域水合物流体聚集和运移特征十分特殊,对丰富水合物成藏研究有重要的理论意义。

  • 加载中
  • 图 1  巴伦支海西南部水合物发现(底图自文献[20])[21-41]

    Figure 1. 

    图 2  巴伦支海西南部Loppa高地测深和背反射图像(据文献[27]修改)

    Figure 2. 

    图 3  (a)Harstad盆地Håkjerringdjupet凹陷中高密度麻坑;(b)浅地层剖面上显示的麻坑;(c)高分辨率多波束探测的麻坑形态和冷泉碳酸盐岩;(d)c图中所示位置的测深(m);(e)ROV观察到的麻坑中的冷泉碳酸盐岩(据文献[34])

    Figure 3. 

    图 4  Loppa高地西南区域地震剖面上显示的倾斜BSR、增强反射以及气烟囱(据文献[42])

    Figure 4. 

    图 5  Lofoten-Vesterålen大陆边缘冷泉碳酸盐岩和菌席(据文献[31])

    Figure 5. 

    图 6  Nordkapp盆地浅部气体异常位置通过断层与深部地层相连(据文献[22])

    Figure 6. 

    图 7  Nordkapp盆地盐底辟构造及断层发育(据文献[22])

    Figure 7. 

  • [1]

    Kretschmer K,Biastoch A,Rüpke,La rs,et al. Modeling the fate of methane hydrates under global warming[J]. Global Biogeochemical Cycles,2015,29(5):610-625. doi: 10.1002/2014GB005011

    [2]

    Morenno H,Giustiniani M,Tinivella U,et al. The challenges of quantifying the carbon stored in Arctic marine gas hydrate[J]. Marine and Petroleum Geology,2016,71:76-82. doi: 10.1016/j.marpetgeo.2015.11.014

    [3]

    Reeburgh W S. Oceanic methane biogeochemistry[J]. Chemical Reviews,2007,107:486-513. doi: 10.1021/cr050362v

    [4]

    Panieri G,Graves C A,James R H,et al. Paleo-methane emissions recorded in foraminifera near the landward limit of the gas hydrate stability zone offshore western Svalbard[J]. Geochemistry,Geophysics,Geosystems,2016,17:521-537.

    [5]

    Tinivella U,Giustiniani M. Gas hydrate stability zone in shallow Arctic Ocean in presence of sub-sea permafrost[J]. Rendiconti Lincei,2016,27:163-171. doi: 10.1007/s12210-016-0520-z

    [6]

    Julia C,Nickel J C,Primio R D,Mangelsdorf K,et al. Characterization of microbial activity in pockmark fields of the SW-Barents Sea[J]. Marine Geology,2012,332/334:152-162. doi: 10.1016/j.margeo.2012.02.002

    [7]

    Dmitrenko I A,Kirillov S A,Tremblay L B,et al. Recent changes in shelf hydrography in the Siberian Arctic:potential for subsea permafrost instability[J]. Journal of Geophysical Research,2011,116:C10027. doi: 10.1029/2011JC007218

    [8]

    Parmentier F J W,Christensen T R. Arctic:speed of methane release[J]. Nature,2013,500:529.

    [9]

    Shakhova N,Semiletov I,Salyuk A,et al. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic shelf[J]. Science,2010,327:1246-1250.

    [10]

    Roy S, Senger K, Hovland M, et al. Geological controls on shallow gas distribution and seailoor seepagen an Arctic fjord of Spitsbergen, Norway[J]. Marine and Petroleum Geology, 2019, 107: 237-254.

    [11]

    Vogt P R,Gardner J, Crane K, et al. The Norwegian–Barents–Svalbard continental margin:introducing a natural laboratory of mass wasting,hydrates,and ascent of sediment,pore water,and methane[J]. Geo-Marine Letters,1999,19:2-21. doi: 10.1007/s003670050088

    [12]

    Boswell R,Rose K,Collett T S,et al. Geologic controls on gas hydrate occurrence in the Mount Elbert prospect,Alaska North Slope[J]. Marine and Petroueum Geology,2011,28(2):589-607. doi: 10.1016/j.marpetgeo.2009.12.004

    [13]

    Klizke P,Helbing M L,Schicks J M,et al. Gas hydrate stability zone of the Barents Sea and the Kara Sea region[J]. Energy Procedia,2016,97:302-309. doi: 10.1016/j.egypro.2016.10.005

    [14]

    Bol'shiyanov D Y, Grigor'ev M N, Schneider W, et al. Origin of ice complex rocks on the Laptev Sea coast in the Late Neopleistocene[C]//Problems of Engineering Cryopedology, Proceedings of the 7th International Simposium. Chita, Russia, 2007 (Inst. Merzlotoved., Yakutsk): 14-17.

    [15]

    Frederick J M,Buffett B A. Effects of submarine groundwater discharge on the present-day extent of relict submarine permafrost and gas hydrate stability on the Beaufort Sea continental shelf[J]. Journal of Geophysical Research:Earth Surface,2015,120(3):417-432. doi: 10.1002/2014JF003349

    [16]

    Safronova A F,Shitsa E Y,Grigor'ev M N,et al. Formation of gas hydrate deposits in the Siberian Arctic shelf[J]. Russian Geology and Geophysics,2010,51(1):83-87. doi: 10.1016/j.rgg.2009.12.006

    [17]

    魏合龙,孙治雷,王利波,等. 天然气水合物系统的环境效应[J]. 海洋地质与第四纪地质,2016,36(1):1-13.

    [18]

    王平康,祝有海,赵 越,等. 极地天然气水合物勘探开发现状及对中国的启示[J]. 极地研究,2014,26(4):502-513.

    [19]

    王志民,陈远航. 中俄打造“冰上丝绸之路”的机遇与挑战[J]. 东北亚论坛,2018,126(2):17-33.

    [20]

    Nickel J C,Primio D R,Kallmeyer J,et al. Tracing the origin of thermogenic hydrocarbon signals in pockmarks from the southwestern Barents Sea[J]. Organic Geochemistry,2013,63:73-84. doi: 10.1016/j.orggeochem.2013.08.008

    [21]

    Vadakkepuliyambatta S,Chand S,Bünz S. The history and future trends of ocean warming-induced gas hydrate dissociation in the SW Barents Sea[J]. Geophysical Research Letters.,2017,44:835-844. doi: 10.1002/2016GL071841

    [22]

    Chand S,Mienert J,Andreassen K,et al. Gas hydrate stability zone modeling in areas of salt tectonics and pockmarks of the Barents Sea suggest an active hydrocarbon venting system[J]. Marine and Petroueum Geology,2008,25:625-636. doi: 10.1016/j.marpetgeo.2007.10.006

    [23]

    Minshull T A,Moreno H M,Betlem P,et al. Hydrate occurrence in Europe:A review of available evidence[J]. Marine and Petroleum Geology,2020,111:735-764. doi: 10.1016/j.marpetgeo.2019.08.014

    [24]

    Vadakkepuliyambatta S,Hornbach M J,Bünz S,et al. Controls on gas hydrate system evolution in a region of active fluid flow in the SW Barents Sea[J]. Marine and Petroleum Geology,2015,66:861-872. doi: 10.1016/j.marpetgeo.2015.07.023

    [25]

    Chand S,Rise L,Ottesen D,et al. Pockmark like depressions near the Goliat hydrocarbon field,Barents Sea:morphology and genesis[J]. Marine and Petroueum Geology,2009,26:1035-1042. doi: 10.1016/j.marpetgeo.2008.09.002

    [26]

    Chand S,Rise L,Knies J,et al. Stratigraphic development of the south Vøring margin (Mid-Norway) since Early Cenozoic time and its influence on subsurface fluid flow[J]. Marine and Petroueum Geology,2011,28(7):1350-1363. doi: 10.1016/j.marpetgeo.2011.01.005

    [27]

    Chand S,Thorsnes T,Brunstad H,et al. Multiple episodes of fluid flow in the SW Barents Sea (Loppa High) evidenced by gas flares,pockmarks and gas hydrate accumulation[J]. Earth and Planetary Science Letters,2012,331/332:305-314. doi: 10.1016/j.jpgl.2012.03.021

    [28]

    Chand S,Knies J,Baranwal S,et al. Structural and stratigraphic controls on subsurface fluid flow at the Veslemøy High,SW Barents Sea[J]. Marine and Petroleum Geology,2014,57:494-508. doi: 10.1016/j.marpetgeo.2014.06.004

    [29]

    Lammers S,Suess E,Hovland M. A large methane plume east of Bear Island (Barents Sea):implications for the marine methane cycle[J]. Geologische Rundschau,1995,84:59-66.

    [30]

    Tasianas A,Bünz S,Bellwald B,et al. High-resolution 3D seismic study of pockmarks and shallow fluid flow systems at the Snøhvit hydrocarbon field in the SW Barents Sea[J]. Marine Geology,2018,403:247-261. doi: 10.1016/j.margeo.2018.06.012

    [31]

    Bøe B,Bellec V K,Rise L,et al. Catastrophic fluid escape venting-tunnels and related features associated with large submarine slides on the continental rise off Vesterlen-Troms,North Norway[J]. Marine and Petroleum Geology,2012,38(1):95-103. doi: 10.1016/j.marpetgeo.2012.08.008

    [32]

    Ostanin I,Anka Z,Primio D R,et al. Hydrocarbon plumbing systems above the Snøhvit gas field:Structural control and implications for thermogenic methane leakage in the Hammerfest Basin,SW Barents Sea[J]. Marine and Petroleum Geology,2013,43:127-146.

    [33]

    Ostanin I,Anka Z,Primio R D,et al. Identification of a large Upper Cretaceous polygonal fault network in the Hammerfest basin:Implications on the reactivation of regional faulting and gas leakage dynamics,SW Barents Sea[J]. Marine Geology,2012,332/334:109-125. doi: 10.1016/j.margeo.2012.03.005

    [34]

    Crémière A,Chand S,Diana S,et al. Structural controls on seepage of thermogenic and microbial methane since the last glacial maximum in the Harstad Basin,southwest Barents Sea[J]. Marine and Petroleum Geology,2018,98:569-581. doi: 10.1016/j.marpetgeo.2018.07.010

    [35]

    Duran R E,Primio D R,Anka Z,et al. 3D-basin modelling of the Hammerfest Basin (southwestern Barents Sea):A quantitative assessment of petroleum generation,migration and leakage[J]. Marine and Petroleum Geology,2013,45:281-303. doi: 10.1016/j.marpetgeo.2013.04.023

    [36]

    Perez-Garcia C,Safronova P A,Mienert J,et al. Extensional rise and fall of a salt diapir in the Srvestsnaget Basin,SW Barents Sea[J]. Marine and Petroleum Geology,2013,46:129-143. doi: 10.1016/j.marpetgeo.2013.05.010

    [37]

    Pau M,Hammer Ø,Chand S. Constraints on the dynamics of pockmarks in the SW Barents Sea:Evidence from gravity coring and high-resolution,shallow seismic profiles[J]. Marine Geology,2014,355:330-345. doi: 10.1016/j.margeo.2014.06.009

    [38]

    Bellwald B,Planke S,Ivanova N L,et al. High-resolution landform assemblage along a buried glacio-erosive surface in the SW Barents Sea revealed by P-Cable 3D seismic data[J]. Geomorphology,2019,332:33-50. doi: 10.1016/j.geomorph.2019.01.019

    [39]

    Lein A Y,Nemirovskaya I A,Ivanov M V. Isotope composition of organic and carbonate carbon of surface horizons of bottom sediments in the area of the Shtokmanovskoe deposit and “pockmarks field” in the Barents Sea[J]. Doklady Earth Sciences,2012,446:1067-1070. doi: 10.1134/S1028334X1209005X

    [40]

    Løvø V,Elverhøi A,Antonsen P,et al. Submarine permafrost and gas hydrates in the northern Barents Sea[J]. Norsk Polarinstitutt,1990,56:171.

    [41]

    Laberg J S,Andreassen K. Gas hydrate and free gas indications within the Cenozoic succession of the Bjornoya Basin,western Barents Sea[J]. Marine and Petroleum Geology,1996,13(8):921-940. doi: 10.1016/S0264-8172(96)00038-4

    [42]

    Rajan A,Bünz S,Mienert J,et al. Gas hydrate systems in petroleum provinces of the SW-Barents Sea[J]. Marine and Petroueum Geology,2013,46:92-106. doi: 10.1016/j.marpetgeo.2013.06.009

    [43]

    Ligtenberg H,Connolly D. Chimney detection and interpretation,revealing sealing quality of faults,geohazards,charge of and leakage from reservoirs[J]. Journal of Geochemical Exploration,2003,78/79:385-387. doi: 10.1016/S0375-6742(03)00095-5

    [44]

    Gac S,Klitzke P,Minakov A,et al. Lithospheric strength and elastic thickness of the Barents Sea and Kara Sea region[J]. Tectonophysics,2016,691:120-132. doi: 10.1016/j.tecto.2016.04.028

    [45]

    Faleide J I, Bjørlykke K, Gabrielsen R H. Geology of the Norwegian Continental Shelf [M]// Bjørlykke K. (Ed.), Petroleum Geoscience: From Sedimentary Environments to Rock Physics. Berlin: Springer, 2010: 467-499.

    [46]

    Gernigon L,Brönner M,Roberts D,et al. Crustal and basin evolution of the southwestern Barents Sea:From Caledonian orogeny to continental breakup[J]. Tectonics,2014,33:347-373. doi: 10.1002/2013TC003439

    [47]

    Ryseth A,Auguston J H,Charnock M,et al. Cenozoic stratigraphy and evolution of the Sørvestsnaget Basin,southwestern Barents Sea[J]. Norway Journal of Geology,2003,83:107-130.

    [48]

    Dimakis P,Braathen B I,Faleide J I,et al. Cenozoic erosion and the preglacial uplift of the Svalbar–Barents Sea region[J]. Tectonophysics,1998,300:311-327. doi: 10.1016/S0040-1951(98)00245-5

    [49]

    Ferré B,Mienert J,Feseker T. Ocean temperature variability for the past 60 years on the Norwegian-Svalbard margin influences gas hydrate stability on human time scales[J]. Journal of Geophysical Research,2012,117:C10017.

    [50]

    Bugge T,Elvebakk G,Fanavoll S,et al. Shallow stratigraphic drilling applied in hydrocarbon exploration of the Nordkapp Basin,Barents Sea[J]. Marine and Petroleum Geology,2002,19:13-37. doi: 10.1016/S0264-8172(01)00051-4

    [51]

    Boitsov S,Petrova V,Jensen H K B,et al. Petroleum-related hydrocarbons in deep and subsurface ediments from South-Western Barents Sea[J]. Marine Environmental Research,2011,71(5):357-368. doi: 10.1016/j.marenvres.2011.04.003

    [52]

    顾兆峰,刘怀山,张志珣. 浅层气逸出到海水中的气泡声学探测方法[J]. 海洋地质与第四纪地质,2008,28(2):129-135.

    [53]

    梅 赛,赵铁虎,杨 源,等. 甲烷羽状流水体声学探测及气体运移通量测算[J]. 海洋地质前沿,2013,29(3):53-59.

    [54]

    赵铁虎,张训华,冯 京. 海底油气渗漏浅表层声学探测技术[J]. 海洋地质与第四纪地质,2010,30(6):149-156.

    [55]

    陈江欣,关永贤,宋海斌,等. 麻坑、泥火山在南海北部与西部陆缘的分布特征和地质意义[J]. 地球物理学报,2015,58(3):919-938. doi: 10.6038/cjg20150319

    [56]

    李双林,董贺平,肖 菲. 海底烃类渗漏的地球物理识别[J]. 海洋地质动态,2007,23(11):14-21. doi: 10.3969/j.issn.1009-2722.2007.11.004

    [57]

    龚建明,廖 晶,尹维翰,等. 北印度洋马克兰增生楔天然气水合物的成藏模式[J]. 海洋地质与第四纪地质,2018,38(2):148-155.

    [58]

    Chow J,Lee J S,Sun R,et al. Characteristics of the bottom simulating reflectors near mud diapirs:offshore southwestern Taiwan[J]. Geo-Marine Letters,2000,20:3-9. doi: 10.1007/s003670000034

    [59]

    吴能友,孙治雷,卢建国,等. 冲绳海槽海底冷泉-热液系统相互作用[J]. 海洋地质与第四纪地质,2019,39(5):23-35.

    [60]

    李 鑫,曹 红,耿 威,等. 碳酸盐晶格硫研究进展[J]. 海洋地质与第四纪地质,2020,40(3):119-131.

    [61]

    Orphan V J,Hinrichs K U,Ussler III W,et al. Comparative analysis of methane-oxidizing archaea and sulphate-reducing bacteria in anoxic marine sediments[J]. Applied and Environmental Microbiology,2001,67:1922-1934. doi: 10.1128/AEM.67.4.1922-1934.2001

    [62]

    Knies J,Matthiessen J,Vogt C,et al. The Plio-Pleistocene glaciation of the Barents Sea-Svalbard region:a new model based on revised chronostratigraphy[J]. Quaternary Science Reviews,2009,28(9/10):812-829.

    [63]

    Svendsen J I,Alexanderson H,Astakhov V I,et al. Late Quaternary ice sheet history of northern Eurasia[J]. Quaternary Science Reviews,2004,23(11/13):1229-1271.

    [64]

    Ottesen D,Dowdeswell J A,Rise L. Submarine landforms and the reconstruction of fast-flowing ice streams within a large Quaternary ice sheet:the 2500-km-long Norwegian-Svalbard margin (57°-80°N)[J]. Geological Society of America Bulletin,2005,117(7/8):1033-1050.

    [65]

    Andreassen K,Laberg J S,Vorren T O. Seafloor geomorphology of the SW Barents Sea and its glaci-dynamic implications[J]. Geomorphology,2008,97(1/2):157-177.

    [66]

    Winsborrow M C M,Andreassen K,Corner G D,et al. Deglaciation of a marine-based ice sheet:late Weichselian palaeo-ice dynamics and retreat in the southern Barents Sea reconstructed from onshore and offshore glacial geomorphology[J]. Quaternary Science Reviews,2010,29(3/4):424-442.

    [67]

    Rüther D C,Mattingsdal R,Andreassen K,et al. Seismic architecture and sedimentology of a major grounding zone system deposited by the Bjørnøyrenna Ice Stream during Late Weichselian deglaciation[J]. Quaternary Science Reviews,2010,30(19/20):2776-2792.

    [68]

    Laberg J S,Andreassen K,Knies J,et al. Late Pliocene-Pleistocene development of the Barents sea ice sheet[J]. Geology,2010,38(2):107-110. doi: 10.1130/G30193.1

    [69]

    Cavanagh A J,Primio D R,Wenderoth S M,et al. Severity and timing of Cenozoic exhumation in the southwestern Barents Sea[J]. Journal of the Geological Society,2006,163(5):761-774. doi: 10.1144/0016-76492005-146

    [70]

    Nisbet E G. Have sudden large releases of methane from geological reservoirs occurred since the Last Glacial Maximum,and could such releases occur again?[J]. Philosophical Transactions of the Royal Society of London. Series A:Mathematical,Physical and Engineering Sciences,2002,360(1793):581-607. doi: 10.1098/rsta.2001.0958

    [71]

    Green P F, Duddy I R. Synchronous exhumation events around the Arctic including examples from Barents Sea and Alaska North Slope[C] //Vining B A, Pickering S C (Eds.), Petroleum Geology: From Mature Basins to New Frontiers Proceedings of the 7th Petroleum Geology Conference. Petroleum Geology Conference Series, Geological Society, London, 2010, 7: 633-644.

    [72]

    Talleraas E. The Hammerfest Basin-an Aulacogen?[J]. Proceedings,Norwegian Sea Symposium Norwegian Petroleum Society,1979,18:1-13.

    [73]

    Solheim A,Kristoffersen Y. The physical environment Western Barents Sea,1:500000. Sediments above the upper regional unconformity:thickness,seismic stratigraphy and outline of the glacial history[J]. Norsk Polarinsitutt Skrifter,1984,179:1-26.

    [74]

    Faleide J I,Gudlaugsson S T,Jacquart G. Evolution of the western Barents Sea[J]. Marine and Petroueum Geology,1984,1:123-150. doi: 10.1016/0264-8172(84)90082-5

    [75]

    Cartwright J,Huuse M,Aplin A. Seal bypass systems[J]. AAPG Bulletin,2007,91(8):1141-1166. doi: 10.1306/04090705181

    [76]

    Sloan E D. Clathrate Hydrates of Natural gases[M]. New York: Marcel Dekker, 1990.

    [77]

    Ruppel C,Dickens G R,Castellini D G,et al. Heat and salt inhibition of gas hydrate formation in the northern Gulf of Mexico[J]. Geophysical Research Letters,2005,32:L04605.

    [78]

    Laberg J S,Andreassen K,Knutsen S M. Inferred gas hydrate on the Barents Sea shelf a model for its formation and a volume estimate[J]. Geo-Marine Letters,1998,18:26-33. doi: 10.1007/s003670050048

  • 加载中

(7)

计量
  • 文章访问数:  1883
  • PDF下载数:  19
  • 施引文献:  0
出版历程
收稿日期:  2020-07-09
刊出日期:  2020-09-28

目录