基于地层厚度趋势相关性分析的走滑位移量计算

康琳, 郭涛, 王伟, 张参, 王国强. 基于地层厚度趋势相关性分析的走滑位移量计算——以渤海湾盆地辽东断裂为例[J]. 海洋地质前沿, 2020, 36(11): 2-10. doi: 10.16028/j.1009-2722.2020.145
引用本文: 康琳, 郭涛, 王伟, 张参, 王国强. 基于地层厚度趋势相关性分析的走滑位移量计算——以渤海湾盆地辽东断裂为例[J]. 海洋地质前沿, 2020, 36(11): 2-10. doi: 10.16028/j.1009-2722.2020.145
KANG Lin, GUO Tao, WANG Wei, ZHANG Can, WANG Guoqiang. DISPLACEMENT CALCULATION FOR STRIKE-SLIP FAULT BASED ON CORRELATION OF STRATA THICKNESS TENDENCY: A CASE FROM THE LIAODONG FAULT, OFFSHORE BOHAI BAY[J]. Marine Geology Frontiers, 2020, 36(11): 2-10. doi: 10.16028/j.1009-2722.2020.145
Citation: KANG Lin, GUO Tao, WANG Wei, ZHANG Can, WANG Guoqiang. DISPLACEMENT CALCULATION FOR STRIKE-SLIP FAULT BASED ON CORRELATION OF STRATA THICKNESS TENDENCY: A CASE FROM THE LIAODONG FAULT, OFFSHORE BOHAI BAY[J]. Marine Geology Frontiers, 2020, 36(11): 2-10. doi: 10.16028/j.1009-2722.2020.145

基于地层厚度趋势相关性分析的走滑位移量计算

  • 基金项目: “十三五”国家科技重大专项“中国近海富烃凹陷优选与有利勘探方向预测”(2016ZX05024-002-006)
详细信息
    作者简介: 康琳(1988—),男,硕士,工程师,主要从事油区构造解析及地球物理勘探方面的研究工作. E-mail:kanglin2@cnooc.com.cn
  • 中图分类号: P618.130.2

DISPLACEMENT CALCULATION FOR STRIKE-SLIP FAULT BASED ON CORRELATION OF STRATA THICKNESS TENDENCY: A CASE FROM THE LIAODONG FAULT, OFFSHORE BOHAI BAY

  • 作为郯庐断裂带东支的重要组成部分,辽东断裂穿越渤海湾盆地辽东湾坳陷东部,属于晚期形成的经典平直型走滑断裂。近年来,沿其周围发现了多个油田和含油气构造,而缺少精细求取海域走滑断裂走滑位移量的方法一直是制约该区域成藏条件分析的难点。基于最新的三维连片地震资料精细解释,依据构造特征及变形机制将辽东走滑断裂分为北、中、南3段,提出一种新方法——通过互相关系数对走滑断裂两盘地层厚度变化趋势进行相似性分析,结合被错动沉积体范围恢复进行验证,定量求取出各段不同时期的走滑位移量。结果表明,辽东走滑断裂从东营组至今走滑速率逐渐减弱,且由北至南走滑变形经历了“强—弱—强”的过程。结合钻井资料,辽东走滑断裂北段和南段由于较大的走滑位移量让其具有较强的侧向封闭能力,其控制形成的圈闭也更有利于油气运聚,具有良好的成藏潜力。

  • 加载中
  • 图 1  走滑断层分段的主要构造特征模式

    Figure 1. 

    图 2  厚度趋势变化相关性分析的理论模型

    Figure 2. 

    图 3  厚度变化趋势相关性分析结果及当Q值最大时两盘相似程度

    Figure 3. 

    图 4  辽东湾东北部方差切片

    Figure 4. 

    图 5  辽东走滑断裂北部剖面正花状构造特征

    Figure 5. 

    图 6  辽东走滑断裂中段剖面线性地堑构造特征

    Figure 6. 

    图 7  辽东走滑断裂南段剖面负花状构造特征

    Figure 7. 

    图 8  辽东走滑断裂北、中、南三段各时期厚度变化趋势相关性分析结果及当Q值最大时两盘相似程度

    Figure 8. 

    图 9  被错断沉积体的平面恢复

    Figure 9. 

    图 10  过K1井和K2井地震剖面

    Figure 10. 

    表 1  辽东走滑断裂分段位移量

    Table 1.  Subsection displacement of Liaodong strike-slip fault

    地质层位北段中段南段
    位移量/km速率/(km·Ma−1位移量/km速率/(km·Ma−1位移量/km速率/(km·Ma−1
    明化镇组时期—今 0.5 0.09 0.3 0.06 0.5 0.09
    馆陶组时期 4 0.22 1.2 0.07 4 0.22
    东营组时期 4.7 0.57 1.6 0.2 6.5 0.79
    下载: 导出CSV
  • [1]

    万天丰. 中国大地构造学[M]. 北京: 地质出版社, 2011: 169-182.

    [2]

    朱光,刘国生,牛漫兰,等. 郯庐断裂带的平移运动与成因[J]. 地质通报,2003,22(3):200-207. doi: 10.3969/j.issn.1671-2552.2003.03.009

    [3]

    施炜,张岳桥,董树文. 郯庐断裂带中段第四纪活动及其分段特征[J]. 地球学报,2003,24(1):11-18. doi: 10.3321/j.issn:1006-3021.2003.01.003

    [4]

    韩国卿,刘永江,Franz N,et al. 松辽盆地西缘边界断裂带中南段走滑性质时间及其位移量[J]. 中国科学:地球科学,2013,42(4):471-482.

    [5]

    单家增,张占文,孙红军,等. 营口—佟二堡断裂带成因机制的构造物理模拟实验研究[J]. 石油勘探与开发,2004,31(1):15-17. doi: 10.3321/j.issn:1000-0747.2004.01.004

    [6]

    童亨茂,宓荣三,于天才,等. 渤海湾盆地辽河西部凹陷的走滑构造作用[J]. 地质学报,2008,82(8):1017-1026. doi: 10.3321/j.issn:0001-5717.2008.08.001

    [7]

    余朝华,韩清华,董冬冬,等. 莱州湾地区郯庐断裂中段新生代右旋走滑位移量的估算[J]. 天然气地球科学,2008,19(1):62-69. doi: 10.11764/j.issn.1672-1926.2008.01.62

    [8]

    曹忠祥. 营口—潍坊断裂带新生代走滑拉分—裂陷盆地伸展量、沉降量估算[J]. 地质科学,2008,43(1):65-81. doi: 10.3321/j.issn:0563-5020.2008.01.006

    [9]

    彭文绪,张如才,孙和风,等. 古新世以来郯庐断裂的位移量及其对莱州湾凹陷的控制[J]. 大地构造与成矿,2010,34(4):585-592.

    [10]

    PEACOCK D C. Displacements and segment linkage in strike-slip fault zones[J]. Journal of Structural Geology,1991,11(9):1026-1035.

    [11]

    徐佑德,柳忠泉. 郯庐断裂带营潍段走滑断裂特征[J]. 石油天然气学报,2006,28(6):12-15. doi: 10.3969/j.issn.1000-9752.2006.06.003

    [12]

    王应斌,黄雷. 渤海海域营潍断裂带展布特征及新生代控盆模式[J]. 地质学报,2013,87(12):1811-1888.

    [13]

    孙磉礅. 营潍断裂带结构特征及其与相邻盆地的关系[J]. 大地构造与成矿,2008,32(4):418-426.

    [14]

    周斌,邓志辉,晁洪太,等. 营潍断裂带走滑构造特征、演化及动力学机制[J]. 西北地震学报,2008,30(2):117-123.

    [15]

    黄雷,周心怀,刘池洋,等. 渤海海域新生代盆地演化的重要转折期证据及区域动力学分析[J]. 中国科学:地球科学,2012,42(6):89-94.

    [16]

    曹忠祥,任凤楼,宋国奇,等. 营口—潍坊断裂带对辽东湾坳陷东部凸起的形成及构造分段的控制作用:来自物理模拟实验和断层几何学特征的证据[J]. 地质科学,2008,4(2):179-188.

    [17]

    WOODCOCK N H,FISCHER M. Strike-slip duplexes[J]. Journal of Structural Geology,1986,8(7):725-735. doi: 10.1016/0191-8141(86)90021-0

    [18]

    MITRA S,PAUL D. Structural geometry and evolution of releasing and restraining bends:Insights from laser-scanned experimental modls[J]. AAPG Bulletin,2011,95(7):1147-1180. doi: 10.1306/09271010060

    [19]

    CEMBRANO J,GONZALEZA G,ARANCIBIAB G,et al. Fault zone development and strain partitioning in an extensional strike-slip duplex:a case study from the Mesozoic Atacama fault system[J]. Northern Chile. Tectonophysics,2005,400:105-125. doi: 10.1016/j.tecto.2005.02.012

    [20]

    孟文,陈群策,吴满路,等. 龙门山断裂带现今构造应力场特征及分段性研究[J]. 地球物理学进展,2013,28(3):1150-1160. doi: 10.6038/pg20130306

    [21]

    康琳,吕丁友,尚锁贵,等. 辽东湾坳陷新生代构造变形特征及营潍断裂带的表现[J]. 石油学报,2019,40(增刊2):79-90.

    [22]

    彭靖淞,徐长贵,吴奎,等. 郯庐断裂带辽东凸起的形成与古辽中洼陷的瓦解[J]. 石油学报,2015,36(3):274-285. doi: 10.7623/syxb201503003

    [23]

    HARDING T P. Seismic Characteristics and identification of negative flower structures,positive flower structures,and positive structural inversion[J]. AAPG Bulletin,1985,69(4):582-600.

    [24]

    罗胜元,何生,王浩. 断层内部结构及其对封闭性的影响[J]. 地球科学进展,2012,27(2):154-164.

  • 加载中

(10)

(1)

计量
  • 文章访问数:  935
  • PDF下载数:  18
  • 施引文献:  0
出版历程
收稿日期:  2020-09-20
刊出日期:  2020-11-30

目录