渤海海域渤中19-6构造古近系泥岩段速度异常分析及定量预测

孙龙飞, 李慧勇, 许鹏, 秦德海, 崔海忠, 陶莉. 渤海海域渤中19-6构造古近系泥岩段速度异常分析及定量预测[J]. 海洋地质前沿, 2020, 36(11): 11-17. doi: 10.16028/j.1009-2722.2020.149
引用本文: 孙龙飞, 李慧勇, 许鹏, 秦德海, 崔海忠, 陶莉. 渤海海域渤中19-6构造古近系泥岩段速度异常分析及定量预测[J]. 海洋地质前沿, 2020, 36(11): 11-17. doi: 10.16028/j.1009-2722.2020.149
SUN Longfei, LI Huiyong, XU Peng, QIN Dehai, CUI Haizhong, TAO Li. ANALYSIS AND PREDICTION OF ABNORMAL VELOCITY IN PALEOGENE MUDSTONE OF STRUCTURE BZ19-6 IN OFFSHORE BOHAI BAY BASIN[J]. Marine Geology Frontiers, 2020, 36(11): 11-17. doi: 10.16028/j.1009-2722.2020.149
Citation: SUN Longfei, LI Huiyong, XU Peng, QIN Dehai, CUI Haizhong, TAO Li. ANALYSIS AND PREDICTION OF ABNORMAL VELOCITY IN PALEOGENE MUDSTONE OF STRUCTURE BZ19-6 IN OFFSHORE BOHAI BAY BASIN[J]. Marine Geology Frontiers, 2020, 36(11): 11-17. doi: 10.16028/j.1009-2722.2020.149

渤海海域渤中19-6构造古近系泥岩段速度异常分析及定量预测

  • 基金项目: “十三五”国家科技重大专项“近海大中型油气田形成条件及勘探技术”(2016ZX05024-002)
详细信息
    作者简介: 孙龙飞(1988—),男,硕士,工程师,主要从事成藏动力学方面的研究工作. E-mail:sunlf4@cnooc.com.cn
  • 中图分类号: P618.130.1

ANALYSIS AND PREDICTION OF ABNORMAL VELOCITY IN PALEOGENE MUDSTONE OF STRUCTURE BZ19-6 IN OFFSHORE BOHAI BAY BASIN

  • 渤中19-6、渤中21/22构造区位于渤中凹陷西南部,其中渤中19-6构造古近系底部砂砾岩层和太古界潜山以及渤中21/22构造古生界潜山均有商业性油气发现。已钻井揭示研究区古近系泥岩段普遍发育异常高压,实测压力系数介于1.2~2.0。在这样的超压背景下,应用传统方法对未钻区块超压泥岩段速度预测存在较大误差。而该段地层速度预测的准确性,对于更深部的砂砾岩层和潜山顶面深度预测及钻井作业安全至关重要。以超压形成机制为出发点,明确本区速度异常的主要控制因素为欠压实作用和生烃作用。随着埋深增加,通过对比压力、速度受欠压实和生烃作用强弱变化的影响,发现在古近系超压泥岩段,欠压实作用对速度影响逐渐趋于稳定,速度的变化主要受控于生烃作用的强弱,并据此建立了速度和影响因素之间的定量关系。根据该方法预测的潜山顶面深度与探井实钻深度吻合度较高,提高了钻井作业的安全性。

  • 加载中
  • 图 1  渤中19-6、渤中21/22构造区域位置图

    Figure 1. 

    图 2  速度、压力受欠压实、生烃作用变化影响模式

    Figure 2. 

    图 3  各井古近系泥岩速度

    Figure 3. 

    图 4  BZ22-1-B井生烃指标与速度关系对比

    Figure 4. 

    图 5  速度和TOC响应关系

    Figure 5. 

    图 6  研究区东三段Ro顶面和底面等值线图

    Figure 6. 

    表 1  各层有机质特征对比

    Table 1.  Characteristics of organic matters

    层位TOC/%S1 + S2/(mg·g−1类型成熟度Ro/%综合评价
    东二下段0.35~1.780.47~12.97Ⅱ2型为主0.5~0.8一般—较好
    东三段0.59~3.890.72~18.89Ⅱ1和Ⅱ2混合型0.7~1.2较好—优质
    沙河街组0.43~2.780.53~16.37I和Ⅱ1混合型0.9~1.2较好—优质
    下载: 导出CSV

    表 2  太古界潜山顶面预测深度与实钻深度对比

    Table 2.  Comparison between predicted depth and actual drilling depth of Archean buried hill top surface

    井名预测深度/m实钻深度/m误差/m
    BZ19-6-F4 1124 121−9
    BZ19-6-G4 5334 5258
    BZ19-6-H4 5764 56412
    BZ19-6-I4 4114 416−5
    BZ19-6-J4 8174 828−11
    下载: 导出CSV
  • [1]

    李芳,周凡,李洋森,等. 高温超压地层随钻声波速度预测方法研究[J]. 海洋石油,2019,9(1):61-65. doi: 10.3969/j.issn.1008-2336.2019.01.061

    [2]

    罗运先,赵宪生,吴雄英,等. 地震波速度的纵,横向变化分析[J]. 成都理工大学学报:自然科学版,2005,32(5):525-529.

    [3]

    袁全社,周家雄,李勇,等. 声波测井曲线重构技术在储层预测中的应用[J]. 中国海上油气,2009,21(1):23-26. doi: 10.3969/j.issn.1673-1506.2009.01.005

    [4]

    GARDNER G H F,GARDNER L W,GREGORY A R. Formation velocity and density at the diagnostic basics for stratigraphic traps[J]. Geophysics,1974,39(6):770-780. doi: 10.1190/1.1440465

    [5]

    熊冉,高亮,杨姣,等. 曲线重构反演在储层横向预测中的应用[J]. 西南石油大学学报:自然科学版,2012,34(1):83-89. doi: 10.3863/j.issn.1674-5086.2012.01.013

    [6]

    贺懿,刘怀山,毛传龙,等. 多曲线声波重构技术在储层预测中的应用研究[J]. 石油地球物理勘探,2008,43(5):549-556. doi: 10.3321/j.issn:1000-7210.2008.05.011

    [7]

    郭永恒. 随钻测井曲线预测及更新方法研究[J]. 石油钻探技术,2010,38(6):25-28. doi: 10.3969/j.issn.1001-0890.2010.06.006

    [8]

    HAN D H,NUR A,MORGAN D. Effect of porosity and caly content on wave velocities in sand stone[J]. Geophysics,1986,51(11):2093-2107. doi: 10.1190/1.1442062

    [9]

    樊洪海. 适于检测砂泥岩地层孔隙压力的综合解释方法[J]. 石油勘探与开发,2002,29(1):90-92. doi: 10.3321/j.issn:1000-0747.2002.01.023

    [10]

    BOWERS G L. Pore pressure estimation from velocity data:Accounting for overpressure mechanisms besides undercompaction[J]. SPE Drilling & Completion,1995,10(2):89-95.

    [11]

    RAMDHAN A M,GOULTY N R. Overpressure and mudrock compaction in the Lower Kutai Basin,Indonesia:A radical reappraisal[J]. AAPG Bulletin,2011,95(10):1725-1744. doi: 10.1306/02221110094

    [12]

    HUNT J M. Generation and migration of petroleum from abnormally pressured fluids compartments[J]. AAPG Bulletin,1990,74:1-12.

    [13]

    郝芳. 超压盆地生烃作用动力学与油气成藏机理[M]. 北京: 科学出版社, 2005.

    [14]

    李小强,赵彦超. 东濮凹陷柳屯洼陷盐湖盆地超压成因[J]. 石油与天然气地质,2012,33(5):686-694. doi: 10.11743/ogg20120504

    [15]

    徐长贵,于海波,王军,等. 渤海海域渤中19大型凝析气田形成条件与成藏特征[J]. 石油勘探与开发,2019,46(1):25-37.

    [16]

    赵靖舟,李军,徐泽阳. 沉积盆地超压成因研究进展[J]. 石油学报,2017,38(9):973-998. doi: 10.7623/syxb201709001

    [17]

    蒋有录,王鑫,于倩倩,等. 渤海湾盆地含油气凹陷压力场特征及与油气富集关系[J]. 石油学报,2016,37(11):1361-1369. doi: 10.7623/syxb201611004

    [18]

    HAO F,ZOU H Y,GONG Z S,et al. Hierarchies of overpressure retardation of organic matter maturation:Case studies from petroleum basins in China[J]. AAPG Bulletin,2007,91:1467-1498. doi: 10.1306/05210705161

    [19]

    GUO X W,HE S,LIU K Y,et al. Oil generation as the dominant overpressure mechanism in the Cenozoic Dongying Depression,Bohai Bay Basin,China[J]. AAPG Bulletin,2010,94:1859-1881. doi: 10.1306/05191009179

    [20]

    薛永安,李慧勇. 渤海海域深层太古界变质岩潜山大型凝析气田的发现及其地质意义[J]. 中国海上油气,2018,30(3):1-9.

    [21]

    施和生,王清斌,王军,等. 渤中凹陷深层渤中19构造大型凝析气田的发现及勘探意义[J]. 中国石油勘探,2019,24(1):36-45. doi: 10.3969/j.issn.1672-7703.2019.01.005

    [22]

    张善文,张林晔,张守春,等. 东营凹陷古近系异常高压的形成与岩性油藏的含油性研究[J]. 科学通报,2009,54(11):1570-1578.

    [23]

    王国庆,宋国奇. 生烃增压在超压形成中的作用:以东营凹陷西部为例[J]. 科学技术与工程,2014(27):177-181. doi: 10.3969/j.issn.1671-1815.2014.27.035

    [24]

    樊洪海. 异常地层压力分析方法与应用[M]. 北京: 科学出版社, 2016.

    [25]

    刘军,汪瑞良,舒誉,等. 烃源岩TOC质量分数地球物理定量预测新技术及在珠江口盆地的应用[J]. 成都理工大学学报:自然科学版,2012,9(4):415-419.

    [26]

    陈宇航,姚根顺,刘震,等. 利用地震信息定量预测烃源岩TOC质量分数[J]. 中南大学学报:自然科学版,2016,47(1):159-165.

    [27]

    王利,李宗星,刘成林,等. 柴达木盆地德令哈坳陷石炭系烃源岩成熟度演化史[J]. 地质力学学报,2019,25(3):370-381.

  • 加载中

(6)

(2)

计量
  • 文章访问数:  826
  • PDF下载数:  22
  • 施引文献:  0
出版历程
收稿日期:  2020-09-20
刊出日期:  2020-11-30

目录