Characteristic of detrital zircon U-Pb geochronology in the southern Okinawa Trough and its implication for sediment provenance
-
摘要:
冲绳海槽南部作为冲绳海槽全新世以来沉积速率最快的区域,其沉积物记录了物源区、黑潮及东亚季风演化等多方面的信息。通过碎屑锆石年代学,对冲绳海槽南部H4-S2孔沉积物开展了物源示踪研究。结合核密度估计图解(Kernel Density Estimation,KDE)、累积年龄分布(Cumulative Age Distribution,CAD)及其相关性分析,进行了研究层位和潜在物源区的可视化分析与相似性检验,揭示了研究样品中2个层位碎屑锆石的年代学特征及物质来源。物源分析结果显示,近200 a来冲绳海槽南部沉积物中的碎屑锆石记录了东海陆架、长江以及兰阳河来源的物质,指示了除兰阳河外,东海陆架及长江在晚全新世对冲绳海槽南部的沉积物质来源具有重要贡献。
Abstract:The southern Okinawa Trough is the area with the fastest deposition rate since the Holocene, and its sediments record the evolution of provenance, Kuroshio and the East Asian monsoon. In this paper, detrital zircon U-Pb geochronology is used to study the provenance of H4-S2 sediments in the southern Okinawa Trough. By means of Kernel Density Estimation (KDE), Cumulative Age Distribution (CAD) and correlation analysis, the visual analysis and similarity test for potential provenances of two layers of sediments are carried out for the trough, and thus the chronology and provenance of detrital zircon revealed. The provenance analysis suggests that the detrital zircon in the sediments from the southern Okinawa Trough are sourced from the East China Sea shelf, Yangtze River and Lanyang River during the last 200 years, which means that the East China Sea shelf and Yangtze River dominated the provenance of the Late Quaternary sediments in the southern Okinawa Trough.
-
Key words:
- Okinawa Trough /
- detrital zircon /
- U-Pb geochronology /
- provenance tracing
-
表 1 H4-S2碳同位素测定年龄
Table 1. Radiocarbon dating of H4-S2
深度/cm 属种 AMS14C测试年龄/a BP 校正年龄/a BP 数据来源 中间年龄 范围/2σ 125 浮游有孔虫混合种 560±30 159 260~47 参考文献 [40] 283 690±30 304 424~230 387 730±30 346 432~268 477 1 090±30 624 682~541 表 2 H4-S2样品粒度特征
Table 2. Grain-size parameters of H4-S2
样品号 深度/cm 沉积年代 分选系数 偏度 峰度 平均粒径/μm 黏土含量/% 粉砂含量/% 砂含量/% OTS-1 26~66 1954—1993年 1.34 1.01 5.17 17.36 11.9 88.0 0.2 OTS-2 112~152 1828—1879年 1.49 0.67 4.23 22.20 11.4 82.9 5.7 表 3 潜在物源区地理位置及数据来源
Table 3. Location and data source of potential provenance area
表 4 H4-S2与潜在物源区碎屑锆石年龄主要分布区间占比
Table 4. Percentage of the major zircon U-Pb age groups of the H4-S2 and potential provenance area
样品号 主要年龄分布区间及比例 200~100 Ma 300~200 Ma 500~300 Ma 1100~600 Ma 2 200~1 700 Ma 2 800~2 400 Ma OTS-1 17.24% 14.94% 13.79% 28.74% 16.09% 9.20% OTS-2 5.80% 24.64% 11.59% 37.68% 11.59% 8.70% 兰阳河口 22.22% 15.56% 22.22% 15.56% 15.56% 8.89% 浊水溪口 20.69% 13.79% 9.20% 11.49% 25.29% 19.54% 长江口 11.22% 20.41% 5.05% 39.39% 20.20% 3.03% 瓯江口 86.57% 1.49% 0.00% 0.00% 12.31% 0.00% 闽江口 28.63% 20.78% 31.13% 13.23% 4.67% 1.17% 东海陆架 18.05% 21.55% 13.78% 29.32% 10.78% 6.52% 表 5 H4-S2与潜在物源区碎屑锆石年龄分布相关性分析结果
Table 5. Correlation analysis results of age distribution for detrital zircon between H4-S2 and potential provenance areas
OTS-1 OTS-2 兰阳河口 浊水溪口 长江口 瓯江口 闽江口 东海陆架 OTS-1 1.00 OTS-2 0.78 1.00 兰阳河口 0.21 −0.17 1.00 浊水溪口 −0.30 −0.55 −0.27 1.00 长江口 0.91 0.88 −0.07 −0.18 1.00 瓯江口 0.04 −0.47 0.54 0.42 −0.18 1.00 闽江口 0.10 −0.08 0.90 −0.53 −0.15 0.42 1.00 东海陆架 0.87 0.83 0.28 −0.53 0.82 0.04 0.36 1.00 -
[1] 杨守业,韦刚健,石学法. 地球化学方法示踪东亚大陆边缘源汇沉积过程与环境演变[J]. 矿物岩石地球化学通报,2015,34(5):902-910. doi: 10.3969/j.issn.1007-2802.2015.05.003
[2] ZHANG L, LUAN X W, ZENG Z G, et al. Key parameters of the structure and evolution of the Okinawa Trough: modelling results constrained by heat flow observations[J]. Geological Journal, 2019, 54: 3542-3555.
[3] ZENG Z G,QIN Y S,ZHAI S K. He,Ne and Ar isotope compositions of fluid inclusions in massive sulfides from the Jade hydrothermal field,Okinawa Trough[J]. Acta Oceanologica Sinica,2004,23(4):655-661.
[4] ZENG Z G,YU S X,YIN X B,et al. Element enrichment and U-series isotopic characteristics of the hydrothermal sulfides at Jade site in the Okinawa Trough[J]. Science in China (Ser. D),2009,52(7):913-924.
[5] ZENG Z G,YU S X,WANG X Y,et al. Geochemical and isotopic characteristics of volcanic rocks form the northern East China Sea shelf margin and the Okinawa Trough[J]. Acta Oceanologica Sinica,2010,29(4):48-61. doi: 10.1007/s13131-010-0050-y
[6] HOU Z Q,ZAW K,LI Y H,et al. Contribution of magmatic fluid to the active hydrothermal system in the JADE Field,Okinawa Trough:evidence from fluid inclusions,oxygen and helium isotopes[J]. International Geology Review,2005,47(4):420-437. doi: 10.2747/0020-6814.47.4.420
[7] ZHANG Y X, ZENG Z G, LI X H, et al. High-potassium volcanic rocks from the Okinawa Trough: implications for a cryptic potassium‐rich and DUPAL-like source[J]. Geological Journal, 2017, 53(5): 1755-1766.
[8] ZHANG Y X,ZENG Z G,CHEN S,et al. New insights into the origin of the bimodal volcanism in the middle Okinawa Trough:not a basalt-rhyolite differentiation process[J]. Frontiers of Earth Science,2018,12(2):325-338. doi: 10.1007/s11707-017-0638-z
[9] SHU Y C,NIELSEN G S,ZENG Z G,et al. Tracing subducted sediment inputs to the Ryukyu Arc-Okinawa Trough system:evidence from thallium isotopes[J]. Geochimica et Cosmochimica Acta,2017,217:462-491. doi: 10.1016/j.gca.2017.08.035
[10] SHU Y C, ZENG Z G, YIN X B, et al. Geochemical and Sr-Nd isotopic constraints on the origin of volcanic rocks from the northern Okinawa Trough[J]. Geological Journal, 2019, 54(6): 3304-3313.
[11] CHEN Z X, ZENG Z G, YIN X B, et al. Petrogenesis of highly fractionated rhyolites in the southwestern Okinawa Trough: constraints from whole-rock geochemistry data and Sr-Nd-Pb-O isotopes[J]. Geological Journal, 2019, 54: 316-332.
[12] GUO K,ZHAI S K,YU Z H,et al. Geochemical characteristics of major and trace elements in the Okinawa Trough basaltic glass[J]. Acta Oceanologica Sinica,2018,37(2):14-24. doi: 10.1007/s13131-017-1075-2
[13] GUO K,ZHAI S K,WANG X Y,et al. The dynamics of the southern Okinawa Trough magmatic system:new insights from the microanalysis of the an contents,trace element concentrations and Sr isotopic compositions of plagioclase hosted in basalts and silicic rocks[J]. Chemical Geology,2018,497:146-151. doi: 10.1016/j.chemgeo.2018.09.002
[14] LI X H,ZENG Z G,CHEN SI,et al. Geochemical and Sr-Nd-Pb isotopic compositions of volcanic rocks from Iheya Ridge,the middle Okinawa Trough:implications for petrogenesis and a mantle source[J]. Acta Oceanologica Sinica,2018,37(1):1-16. doi: 10.1007/s13131-018-1153-0
[15] LI X H,ZENG Z G,WANG X Y,et al. Petrogenesis of basalt from the middle Okinawa Trough:new insights from olivine-hosted melt inclusions[J]. Geological Journal,2018,53:3129-3146. doi: 10.1002/gj.3150
[16] LI X H, ZENG Z G, YANG H X, et al. Geochemistry of silicate melt inclusions in middle and southern Okinawa Trough rocks: implications for petrogenesis and variable subducted sediment component injection[J]. Geological Journal, 2019, 54(3): 1160-1189.
[17] ZENG Z G,CHEN S,MA Y,et al. Chemical compositions of mussels and clams from the Tangyin and Yonaguni Knoll IV hydrothermal fields in the southwestern Okinawa Trough[J]. Ore Geology Reviews,2017,87:172-191. doi: 10.1016/j.oregeorev.2016.09.015
[18] ZENG Z G,MA Y,WANG X Y,et al. Elemental compositions of crab and snail shells from the Kueishantao hydrothermal field in the southwestern Okinawa Trough[J]. Journal of Marine Systems,2018,180:90-101. doi: 10.1016/j.jmarsys.2016.08.012
[19] ZHANG J,SUN Q L,ZENG Z G,et al. Microbial diversity in the deep-sea sediments of Iheya North and Iheya Ridge,Okinawa Trough[J]. Microbiological Research,2015,177:43-52. doi: 10.1016/j.micres.2015.05.006
[20] SUN Q L,ZENG Z G,CHEN S,et al. First comparative analysis of the community structures and carbon metabolic pathways of the bacteria associated with alvinocaris longirostris in a hydrothermal vent of Okinawa Trough[J]. Plos One,2016,11(4):e0154359. doi: 10.1371/journal.pone.0154359
[21] 李铁刚, 常凤鸣. 冲绳海槽古海洋学[M]. 北京: 海洋出版社, 2009.
[22] DOU Y G,YANG S Y,LIU Z X,et al. Clay mineral evolution in the central Okinawa Trough since 28 ka:implications for sediment provenance and paleoenvironmental change[J]. Palaeogeography Palaeoclimatology Palaeoecology,2010,288(4):108-117.
[23] DOU Y G, YANG S Y, LIU Z X, et al. Sr-Nd isotopic constraints on terrigenous sediment provenances and Kuroshio Current variability in the Okinawa Trough during the late Quaternary[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2012, 365/366(9): 38-47.
[24] DOU Y G,YANG S Y,SHI X F,et al. Provenance weathering and erosion records in southern Okinawa Trough sediments since 28 ka:geochemical and Sr–Nd–Pb isotopic evidences[J]. Chemical Geology,2016,425:93-109. doi: 10.1016/j.chemgeo.2016.01.029
[25] 秦蕴珊, 赵一阳, 陈丽蓉, 等. 东海地质[M]. 北京: 科学出版社, 1987.
[26] 赵一阳,鄢明才. 黄河、长江、中国浅海沉积物化学元素丰度比较[J]. 科学通报,1992,37(13):1202-1204.
[27] 蒋富清,李安春,李铁刚. 冲绳海槽南部柱状沉积物地球化学特征及其古环境意义[J]. 海洋地质与第四纪地质,2002,22(3):11-17.
[28] 蒋富清,孟庆勇,徐兆凯,等. 冲绳海槽北部15ka B. P. 以来沉积物源及控制因素:稀土元素的证据[J]. 海洋与湖沼,2008,39(2):112-118. doi: 10.3321/j.issn:0029-814X.2008.02.003
[29] 刘娜,孟宪伟. 冲绳海槽中段表层沉积物中稀土元素组成及其物源指示意义[J]. 海洋地质与第四纪地质,2004,24(4):37-43.
[30] LIU J P,LIU C S,XU K H,et al. Flux and fate of small mountainous rivers derived sediments into the Taiwan Strait[J]. Marine Geology,2008,256(1):65-76.
[31] DIEKMANN B,HOFMANN J,HENRICH R,et al. Detrital sediment supply in the southern Okinawa Trough and its relation to sea-level and Kuroshio dynamics during the late Quaternary[J]. Marine Geology,2008,255(1):83-95.
[32] HUANG X,CHEN S,ZENG Z G,et al. Characteristics of hydrocarbons in sediment core samples from the northern Okinawa Trough[J]. Marine Pollution Bulletin,2017,115(1):507-514.
[33] CHUNG Y C,HUNG G W. Particulate fluxes and transports on the slope between the southern East China Sea and the South Okinawa Trough[J]. Continental Shelf Research,2000,20(4):571-597.
[34] ISEKI K,OKAMURA K,KIYOMOTO Y. Seasonality and composition of downward particulate fluxes at the continental shelf and Okinawa Trough in the East China Sea[J]. Deep Sea Research Part II Topical Studies in Oceanography,2003,50(2):457-473. doi: 10.1016/S0967-0645(02)00468-X
[35] WANG W J,JIANG W S. Study on the seasonal variation of the suspended sediment distribution and transportation in the East China seas based on SeaWiFS data[J]. Journal of Ocean University of China,2008,7(4):385-392. doi: 10.1007/s11802-008-0385-6
[36] JIAN Z M,WANG P X,SAITO Y,et al. Holocene variability of the Kuroshio Current in the Okinawa Trough,northwestern Pacific Ocean[J]. Earth and Planetary Science Letters,2000,184(1):305-319.
[37] KATAYAMA H,WATANABE Y. The Huanghe and Changjiang contribution to seasonal variability in terrigenous particulate load to the Okinawa Trough[J]. Deep-Sea Research II,2013,50:475-485.
[38] XU K H,MILLIMAN J D,LI A C,et al. Yangtze- and Taiwan-derived sediments on the inner shelf of East China Sea[J]. Continental Shelf Research,2009,29(18):2240-2256. doi: 10.1016/j.csr.2009.08.017
[39] 王佳泽,李安春,黄杰. 17000年以来冲绳海槽中部沉积物物源演化及其古环境记录[J]. 海洋地质与第四纪地质,2013,33(6):105-114.
[40] 杨娅敏. 冲绳海槽南部浊流沉积层中的硫化物特征研究[D]. 北京: 中国科学院大学, 2021.
[41] ZHAI S K,XU S M,YU Z H. Two possible hydrothermal vents in the northern Okinawa Trough[J]. Chinese Science Bulletin,2001,46(11):943-945. doi: 10.1007/BF02900472
[42] MIYAIRI Y,YOSHIDA K,MIYAZAKI Y,et al. Improved 14 C dating of a tephra layer (AT tephra,Japan) using AMS on selected organic fractions[J]. Nuclear Inst and Methods in Physics Research B,2004,223-224:555-559.
[43] HUH C A,SU C C,LIANG W T,et al. Linkages between turbidites in the southern Okinawa Trough and submarine earthquakes[J]. Geophysical Research Letters,2004,31(12):261-268.
[44] LEE S Y,HUH C A,SU C C,et al. Sedimentation in the Southern Okinawa Trough:enhanced particle scavenging and teleconnection between the Equatorial Pacific and western Pacific margins[J]. Deep Sea Research Part I Oceanographic Research Papers,2004,51(11):1769-1780. doi: 10.1016/j.dsr.2004.07.008
[45] 赵德博,万世明. 冲绳海槽沉积物物源示踪研究进展[J]. 海洋地质前沿,2015,31(2):32-41.
[46] MOLLER A,O'BRIEN P J,KENNEDY A,et al. Linking growth episodes of zircon and metamorphic textures to zircon chemistry:an example from the ultrahigh-temperature granulites of Rogaland (SW Norway)[J]. Geological Society of London Special Publications,2003,220(1):65-81. doi: 10.1144/GSL.SP.2003.220.01.04
[47] MOECHER D P,SAMSON S D. Differential zircon fertility of source terranes and natural bias in the detrital zircon record:implications for sedimentary provenance analysis[J]. Earth and Planetary Science Letters,2006,247(3):252-266.
[48] THOMAS W A. Detrital-zircon geochronology and sedimentary provenance[J]. Lithosphere,2011,3(4):304-308. doi: 10.1130/RF.L001.1
[49] 谢静,吴福元,丁仲礼. 浑善达克沙地的碎屑锆石U-Pb年龄和Hf同位素组成及其源区意义[J]. 岩石学报,2007,23(2):523-528. doi: 10.3969/j.issn.1000-0569.2007.02.028
[50] 谢静,杨石岭,丁仲礼. 黄土物源碎屑锆石示踪方法与应用[J]. 中国科学:地球科学,2012(6):133-143.
[51] STEVENS T, PALK C, CARTER A, et al. Assessing the provenance of loess and desert sediments in northern China using U-Pb dating and morphology of detrital zircons[J]. Geriatrics and Gerontology International, 2010, 12(s1): 88-102.
[52] 杨蓉,SEWARD D,周祖翼. 长江流域现代沉积物碎屑锆石U-Pb年龄物源探讨[J]. 海洋地质与第四纪地质,2010,30(6):73-83.
[53] HE M Y,ZHENG H B,BOOKHAGEN B,et al. Controls on erosion intensity in the Yangtze River basin tracked by U–Pb detrital zircon dating[J]. Earth-Science Reviews,2014,136(3):121-140.
[54] HE M Y,ZHENG H B,CLIFT P D. Zircon U-Pb geochronology and Hf isotope data from the Yangtze River sands:implications for major magmatic events and crustal evolution in central China[J]. Chemical Geology,2013,360/361(1):186-203.
[55] HUANG X T,SONG J Z,YUE W,et al. Detrital zircon U-Pb ages in the East China Seas:implications for provenance analysis and sediment budgeting[J]. Minerals,2020,10(5):398. doi: 10.3390/min10050398
[56] XU Y H,WANG C Y,ZHAO T P. Using detrital zircons from river sands to constrain major tectono-thermal events of the Cathaysia Block,SE China[J]. Journal of Asian Earth Sciences,2016,124:1-13. doi: 10.1016/j.jseaes.2016.04.012
[57] ZHONG L F,LI G,YAN W,et al. Using zircon U–Pb ages to constrain the provenance and transport of heavy minerals within the northwestern shelf of the South China Sea[J]. Journal of Asian Earth Sciences,2017,134:176-190. doi: 10.1016/j.jseaes.2016.11.019
[58] 邓凯,杨守业,李超,等. 台湾山溪型小河流碎屑锆石年代学和粒径分析[J]. 地质学报,2015,89(s1):7-8.
[59] SHAO L,CAO L C,PANG X,et al. Detrital zircon provenance of the Paleogene syn‐rift sediments in the northern South China Sea[J]. Geochemistry Geophysics Geosystems,2016,17(2):255-269. doi: 10.1002/2015GC006113
[60] DENG K,YANG S Y,LI C,et al. Detrital zircon geochronology of river sands from Taiwan:implications for sedimentary provenance of Taiwan and its source link with the east China mainland[J]. Earth-Science Reviews,2017,164:31-47. doi: 10.1016/j.earscirev.2016.10.015
[61] WEISLOGEL A L,GRAHAM S A,CHANG E Z,et al. Detrital zircon provenance of the Late Triassic Songpan-Ganzi complex:sedimentary record of collision of the North and South China blocks[J]. Geology,2006,42(2):97-100.
[62] COMPSTON W. Zircon U-Pb ages for the early Cambrian time-scale[J]. Journal of the Geological Society,1992,149(2):171-184. doi: 10.1144/gsjgs.149.2.0171
[63] VERMEESCH P,RESENTINI A,GARZANTI E. An R package for statistical provenance analysis[J]. Sedimentary Geology,2016,336:14-25. doi: 10.1016/j.sedgeo.2016.01.009
[64] VERMEESCH P. Multi-sample comparison of detrital age distributions[J]. Chemical Geology,2013,341(2):140-146.
[65] VERMEESCH P. On the visualisation of detrital age distributions[J]. Chemical Geology,2012,312/313(3):190-194.
[66] 陈丽蓉. 中国海沉积矿物学[M]. 北京: 海洋出版社, 2008.
[67] YANG B J, LIU J H, SHI X F, et al. Mineralogy and sulfur isotope characteristics of metalliferous sediments from the Tangyin hydrothermal field in the southern Okinawa Trough[J]. Ore Geology Reviews, 2020, 120: 103464.
[68] YAN Q S,SHI X F. Petrologic perspectives on tectonic evolution of a nascent basin (Okinawa Trough) behind Ryukyu Arc:a review[J]. Acta Oceanologica Sinica,2014,33(4):1-12. doi: 10.1007/s13131-014-0400-2
[69] KELLER C B,SCHOENE B,BARBONI M,et al. Volcanic-plutonic parity and the differentiation of the continental crust[J]. Nature,2015,523(7560):301-307. doi: 10.1038/nature14584