Characteristics of submarine hydrate pingos and mud volcanoes and their effects on gas hydrate accumulation
-
摘要:
海底水合物丘与泥火山均属于不同相态流体向上运移排出至地表过程中的产物,与这2种特殊地质体相关的浅表层天然气水合物具有独特的成藏过程和赋存规律,同时,它们也都是富碳流体排放的重要途径。然而,由于对这2种地质体缺少系统的调查,加之对浅表层天然气水合物资源和碳泄漏过程的研究程度不高,当前在海底水合物丘与泥火山特征刻画及准确甄别上还存在障碍,导致难以科学地评价与其伴生的水合物资源的聚集过程及环境效应。通过总结已有海底水合物丘与泥火山的阶段性研究工作,对该2种特殊地质体从地貌特征、内部结构、形成机制等方面开展比较研究,系统分析了二者的演化过程以及对与之相关的天然气水合物聚集过程的影响,并讨论了2种地质体的区别与联系。本研究可为理解全球海底富碳流体的排放及其对海洋碳循环的贡献以及海底浅表层天然气水合物资源量的评价提供参考。
Abstract:Submarine hydrate pingos and mud volcanos are both the products of upward migration and discharge of fluids in different phases to the surface. The shallow gas hydrate reservoirs related to these two special geological bodies have unique formation process and occurrence, and at the same time, they are also an important way of carbon-rich fluid emission. However, due to the lack of systematic investigation and research about these two geological bodies, and the lack of attention to shallow gas hydrate resources and carbon leakage, there are still obstacles in fine characterization and accurate discrimination of submarine hydrate pingos and mud volcanoes. This makes it difficult to scientifically evaluate the accumulation process and environmental effects of their associated gas hydrate resources. In this study, by summarizing the existing researches on the submarine hydrate pingos and mud volcanos, the two special geological bodies are compared from the aspects of geomorphic characteristics, internal structure and formation mechanism. The evolution the process of the two geological bodies and their influence on the related gas hydrate accumulation process are systematically analyzed, and the essential differences and relations between the two geological bodies are discussed. We hope this study might provide an important reference for the research on submarine carbon leakage and its contribution to the carbon cycle, as well as the evaluation of global shallow gas hydrate resources.
-
Key words:
- submarine gas hydrate pingo /
- mud volcano /
- gas hydrate /
- accumulation process /
- carbon emission
-
图 2 西北巴伦支海地震剖面[14]
Figure 2.
图 4 泥火山的基本结构[17]
Figure 4.
图 5 HMMV的简化形态分区[54]
Figure 5.
图 6 泥火山地震反射特征[6]
Figure 6.
图 7 海底水合物丘的演化阶段[12]
Figure 7.
图 8 HMMV演化的概念模型[66]
Figure 8.
图 9 HMMV的水合物分布[54]
Figure 9.
表 1 海底水合物丘与泥火山特征对比
Table 1. Comparison of characteristics between submarine hydrate pingo and mud volcano
分类特征 海底水合物丘 泥火山 规模 微型至小型 小型至巨型 分布 相对局限 相对广泛 地貌 穹窿状、表面多坑洼 锥状或圆顶状、有中心喷口 BSR特征 位于其底部、与地层平行 位于其两翼、相对地层上拉 表层沉积物 具有自生碳酸盐岩、年代新 具有深部物质、年代老 控制因素 断层、富烃流体 构造作用、超压流体等 演化模式 幕式形成与消亡 持续演化、周期性喷发 水合物赋存 透镜体状 环带状 -
[1] BOSWELL R,COLLETT T S. Current perspectives on gas hydrate resources[J]. Energy and Environmental Science,2011,4(4):1206-1215.
[2] MILKOV A V. Global estimates of hydrate-bound gas in marine sediments:how much is really out there?[J]. Earth-Science Reviews,2004,66(3):183-197.
[3] TRÉHU A M. Gas hydrates in marine sediments:lessons from scientific ocean drilling[J]. Oceanography,2006,19:124-142. doi: 10.5670/oceanog.2006.11
[4] 吴能友,张海啟,杨胜雄,等. 南海神狐海域天然气水合物成藏系统初探[J]. 天然气工业,2007,167(9):1-6. doi: 10.3321/j.issn:1000-0976.2007.09.001
[5] SNYDER G T,SANO Y,TAKAHATA N,et al. Magmatic fluids play a role in the development of active gas chimneys and massive gas hydrates in the Japan Sea[J]. Chemical Geology,2020,535:119462. doi: 10.1016/j.chemgeo.2020.119462
[6] 蔡峰,吴能友,闫桂京,等. 海洋浅表层天然气水合物成藏特征[J]. 海洋地质前沿,2020,36(9):73-78.
[7] CUNNINGHAM R,LINDHOLM R M. Seismic evidence for widespread gas hydrate formation,offshore West Africa[J]. Petroleum Systems of South Atlantic Margins,2000,73(1):93-106.
[8] HOVLAND M,SVENSEN H. Submarine pingoes:indicators of shallow gas hydrates in a pockmark at Nyegga,Norwegian Sea[J]. Marine Geology,2005,228(1):15-23.
[9] PAULL C K,USSLER W,DALLIMORE S R,et al. Origin of pingo‐like features on the Beaufort Sea shelf and their possible relationship to decomposing methane gas hydrates[J]. Geophysical Research Letters,2007,34(1):223-234.
[10] PAULL C K,NORMARK W R,III W U,et al. Association among active seafloor deformation,mound formation,and gas hydrate growth and accumulation within the seafloor of the Santa Monica Basin,offshore California[J]. Marine Geology,2008,250(3):258-275.
[11] FREIRE A,MATSUMOTO R,SANTOS L A. Structural-stratigraphic control on the umitaka spur gas hydrates of Joetsu Basin in the eastern margin of Japan Sea[J]. Marine & Petroleum Geology,2011,28(10):1967-1978.
[12] SERIÉ C,HUUSE M,SCHØDT N H. Gas hydrate pingoes:deep seafloor evidence of focused fluid flow on continental margins[J]. Geology,2012,40(3):207-210. doi: 10.1130/G32690.1
[13] SEROV P,PORTNOV A,MIENERT J,et al. Methane release from pingo‐like features across the South Kara Sea shelf,an area of Thawing offshore permafrost[J]. Journal of Geophysical Research Earth Surface,2015,120(8):1515-1529. doi: 10.1002/2015JF003467
[14] WAAGE M,PORTNOV A,SEROV P,et al. Geological controls on fluid flow and gas hydrate pingo development on the Barents Sea margin[J]. Geochemistry,Geophysics,Geosystems,2019,20(2):630-650.
[15] MILKOV A V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates[J]. Marine Geology,2000,167(1):29-42.
[16] KOPF A. Significance of mud volcanism[J]. Reviews of Geophysics,2002,40:1-2.
[17] DIMITROV L I. Mud volcanoes:the most important pathway for degassing deeply buried sediments[J]. Earth-science Reviews,2002,59(1):49-76.
[18] KHOLODOV V N. Mud volcanoes,their distribution regularities and genesis:communication 1. mud volcanic provinces and morphology of mud volcanoes[J]. Lithology and Mineral Resources,2002,37(3):197-209.
[19] 解习农,李思田,胡祥云,等. 莺歌海盆地底辟带热流体输导系统及其成因机制[J]. 中国科学:地球科学,1999,29(3):247-256.
[20] 何家雄,祝有海,马文宏,等. 火山、泥火山/泥底辟及含气陷阱与油气运聚关系[J]. 中国地质,2010,37(6):1720-1732. doi: 10.3969/j.issn.1000-3657.2010.06.018
[21] 石万忠,宋志峰,王晓龙,等. 珠江口盆地白云凹陷底辟构造类型及其成因[J]. 地球科学,2009,34(5):778-784.
[22] 杨晓璐,钟思玲,万志峰. 泥底辟/泥火山流体热效应及其对天然气水合物赋存的影响[J]. 海洋地质前沿,2018,34(7):15-23.
[23] 万志峰,张伟,陈崇敏,等. 琼东南盆地冷泉差异发育特征及其深部控制机理[J]. 海洋地质前沿,2021,37(7):1-10.
[24] 何家雄, 万志峰, 张伟, 等. 南海北部泥火山/泥底辟形成演化与油气及水合物成藏[M]. 北京: 科学出版社, 2019: 1-11.
[25] TINIVELLA U,GIUSTINIANI M. An overview of mud volcanoes associated to gas hydrate system[J]. Updates in Volcanology:new Advances in Understanding Volcanic Systems,2012:225-267.
[26] SAUTER E J,MUYAKSHIN S I,CHARLOU J L,et al. Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles[J]. Earth and Planetary Science Letters,2006,243(3):354-365.
[27] KOPF A J,KLAESCHEN D,MASCLE J. Extreme efficiency of mud volcanism in dewatering accretionary prisms[J]. Earth and Planetary Science Letters,2001,189(3):295-313.
[28] ETIOPE G,MILKOV A V. A new estimate of global methane flux from onshore and shallow submarine mud volcanoes to the atmosphere[J]. Environmental Geology,2004,46(8):997-1002. doi: 10.1007/s00254-004-1085-1
[29] JUDD A G,HOVLAND M,DIMITROV L I,et al. The geological methane budget at continental margins and its influence on climate change[J]. Geofluids,2002,2(2):109-126. doi: 10.1046/j.1468-8123.2002.00027.x
[30] MILKOV A V,SASSEN R,APANASOVICH T V,et al. Global gas flux from mud volcanoes:a significant source of fossil methane in the atmosphere and the ocean[J]. Geophysical Research Letters,2003,30(2):91-94.
[31] JUDD A. Mud volcanoes, geodynamics and seismicity[M]. Springer, 2005: 147-157.
[32] 李昂,蔡峰,李清,等. 浅表层泥火山型天然气水合物成藏地质模型[J]. 海洋地质前沿,2020,36(9):94-100.
[33] MAZZINI A,ETIOPE G. Mud volcanism:an updated review[J]. Earth-Science Reviews,2017,168:81-112. doi: 10.1016/j.earscirev.2017.03.001
[34] 徐翠玲,孙治雷,吴能友,等. 海底泥火山的甲烷迁移与转化及其对海洋碳输入的影响[J]. 海洋地质与第四纪地质,2020,40(6):1-13.
[35] CIAIS P, CHRIS S, GOVINDASAMY B, et al. Carbon and Other Biogeochemical Cycles[M]//Climate Change 2013: the Physical Science Basis. 2013: 465-570.
[36] 张金华,魏 伟,刘 杰,等. 海底水合物冰丘的特征及意义[J]. 海洋地质与第四纪地质,2017,37(1):117-124.
[37] MACKAY J. Pingo growth and collapse,Tuktoyaktuk Peninsula area,western Arctic coast,Canada:a long-term field study[J]. Géographie Physique Et Quaternaire,1998,52(3):271-323.
[38] YOSHIKAWA K,SHARKHUU N,SHARKHUU A. Groundwater hydrology and stable isotope analysis of an open‐system pingo in northwestern Mongolia[J]. John Wiley & Sons,Ltd,2013,24(3):175-183.
[39] ANDREASSEN K,HUBBARD A,WINSBORROW W,et al. Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor[J]. Science,2017,356(6341):948-953. doi: 10.1126/science.aal4500
[40] KIOKA A. Geological occurrence and morphological feature of submarine mud volcanoes:a brief review[J]. The Journal of the Geological Society of Japan,2019,126(1):17-28.
[41] CHEN S C,HSU S K,WANG Y,et al. Distribution and characters of the mud diapirs and mud volcanoes off southwest Taiwan[J]. Journal of Asian Earth Sciences,2013,92(5):201-214.
[42] ÇIFÇI G,LIMONOV A,DIMITROV L,et al. Mud volcanoes and dome:like structures at the eastern Mediterranean Ridge[J]. Marine Geophysical Researches,1997,19(5):421-438. doi: 10.1023/A:1004319226273
[43] SUMNER R H,WESTBROOK G K. Mud diapirism in front of the barbados accretionary wedge:the influence of fracture zones and North America–South America Plate Motions[J]. Marine and Petroleum Geology,2001,18(5):591-613. doi: 10.1016/S0264-8172(01)00010-1
[44] LEÓN R,SOMOZA L,MEDIALDEA T,et al. Sea-floor features related to hydrocarbon seeps in deepwater carbonate-mud mounds of the Gulf of Cádiz:from mud flows to carbonate precipitates[J]. Geo-marine Letters,2007,27(2):237-247.
[45] NISHIO Y,IJIRI A,TOKI T,et al. Origins of lithium in submarine mud volcano fluid in the Nankai accretionary wedge[J]. Earth and Planetary Science Letters,2015,414:144-155.
[46] KRASTEL S,SPIESS V,IVANOV M,et al. Acoustic investigations of mud volcanoes in the Sorokin Trough,Black Sea[J]. Geo-marine Letters,2003,23(3):230-238.
[47] ROVERE M,GAMBERI F,MERCORELLA A,et al. Venting and seepage systems associated with mud volcanoes and mud diapirs in the southern Tyrrhenian Sea[J]. Marine Geology,2014,347:153-171. doi: 10.1016/j.margeo.2013.11.013
[48] DUPRÉ S,BUFFET G,MASCLE J,et al. High-resolution mapping of large gas emitting mud volcanoes on the Egyptian continental margin (nile deep sea fan) by Auv surveys[J]. Marine Geophysical Researches,2008,29(4):189-196.
[49] DIMITROV L,WOODSIDE J. Deep sea pockmark environments in the eastern Mediterranean[J]. Marine Geology,2003,195(1):263-276.
[50] HOVLAND M, JENSEN S. The Nyegga seeps revisited - hydrates, pipes, carbonates, pingoes, exotic fauna, and complex pockmarks[C]//Eage workshop on shallow anomalies. Indications of Prospective Petroleum Systems, 2014.
[51] NIEMANN H,DUARTE J,HENSEN C,et al. Microbial methane turnover at mud volcanoes of the Gulf of Cadiz[J]. Geochimica Et Cosmochimica Acta,2006,70(21):5336-5355. doi: 10.1016/j.gca.2006.08.010
[52] VOGT P R,CHERKASHEV G,GINSBURG G,et al. Hakon mosby mud volcano provides unusual example of venting[J]. John Wiley and Sons,Ltd,1997,78(48):549-557.
[53] GINSBURG G,MILKOV A V,SOLOVIEV V,et al. Gas hydrate accumulation at the Hakon Mosby mud volcano[J]. Geo-Marine Letters,1999,19(1):57-67.
[54] MILKOV A V,VOGT P R,CRANE K,et al. Geological,geochemical,and microbial processes at the hydrate-bearing Håkon Mosby mud volcano:a review[J]. Chemical Geology,2004,205(3):347-366.
[55] 赵汗青,吴时国,徐 宁,等. 东海与泥底辟构造有关的天然气水合物初探[J]. 现代地质,2006,20(1):115-122. doi: 10.3969/j.issn.1000-8527.2006.01.014
[56] 孟祥君,张训华,韩 波,等. 海底泥火山地球物理特征[J]. 海洋地质前沿,2012,28(12):6-9.
[57] 阎贫,王彦林,郑红波,等. 东沙群岛西南海区泥火山的地球物理特征[J]. 海洋学报(中文版),2014,36(7):142-148. doi: 10.3969/j.issn.0253-4193.2014.07.016
[58] EGOROV A V,CRANE K,VOGT P R,et al. Gas hydrates that outcrop on the sea floor:stability models[J]. Geo-marine Letters,1999,19(1):68-75.
[59] XU W Y,CAROLYN R. Predicting the occurrence,distribution,and evolution of methane gas hydrate in porous marine sediments[J]. John Wiley and Sons,Ltd,1999,104(B3):5081-5095.
[60] LU H L,YU S,LEE J,et al. Complex gas hydrate from the cascadia margin[J]. Nature:International Weekly Journal of Science,2007,445(7125):303-306.
[61] 何家雄,钟灿鸣,姚永坚,等. 南海北部天然气水合物勘查试采及研究进展与勘探前景[J]. 海洋地质前沿,2020,36(12):3-16.
[62] HUGUEN C,MASCLE J,CHAUMILLON E,et al. Structural setting and tectonic control of mud volcanoes from the central Mediterranean Ridge (eastern Mediterranean)[J]. Marine Geology,2004,209(1):245-263.
[63] TINIVELLA U, GIUSTINIANI M. An Overview of Mud Volcanoes Associated to Gas Hydrate System[M], 2012: 226-252.
[64] 何家雄,祝有海,翁荣南,等. 南海北部边缘盆地泥底辟、泥火山特征及油气地质意义[J]. 科学,2012,64(2):15-18.
[65] HENSEN C,NUZZO M,HORNIBROOK E,et al. Sources of mud volcano fluids in the gulf of Cadiz:indications for hydrothermal imprint[J]. Geochimica Et Cosmochimica Acta,2007,71(5):1232-1248. doi: 10.1016/j.gca.2006.11.022
[66] PEREZ C,FESEKER T,MIENERT J,et al. The Hakon Mosby mud volcano:330 000 years of focused fluid flow activity at the Sw Barents Sea slope[J]. Marine Geology,2009,262(1):105-115.
[67] ELGER J,BERNDT C,RÜPKE L,et al. Submarine slope failures due to pipe structure formation.[J]. Nature Communications,2018,9(1):715. doi: 10.1038/s41467-018-03176-1
[68] BOHRMANN G,IVANOV M,FOUCHER J,et al. Mud volcanoes and gas hydrates in the Black Sea:new data from Dvurechenskii and Odessa mud volcanoes[J]. Geo-marine Letters,2003,23(3):239-249.
[69] ALOISI G,PIERRE C,ROUCHY J M,et al. Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilisation[J]. Earth and Planetary Science Letters,2000,184(1):321-338.
[70] MAZURENKO L L,SOLOVIEV V A,BELENKAYA I,et al. Mud Volcano gas hydrates in the gulf of Cadiz[J]. Terra Nova,2002,14(5):321-329. doi: 10.1046/j.1365-3121.2002.00428.x
[71] FRIEDRICHS M,KRASTEL S,SPIESS V,et al. Three-dimensional seismic investigations of the Sevastopol mud volcano in correlation to gas/fluid migration pathways and indications for gas hydrate occurrences in the Sorokin Trough (Black Sea)[J]. Geochemistry Geophysics Geosystems,2013,9(5):1-22.