Quantitative prediction to fractured reservoir in buried hill based on pre-stack amplitude azimuthal anisotropy
-
摘要:
裂缝型碳酸盐岩储层非均质性极强,储层类别以高角度缝为主。在油田开发中如何精准刻画储层空间展布特征,寻找构造高部位剩余油是亟需解决的难题。通过叠前方位各向异性技术对潜山中小型裂缝进行预测,结合地层微电阻率扫描成像(FMI)裂缝解释结果进行标定和分级刻画,进一步应用三维可视化及自动追踪技术实现对储集裂缝体的空间定量雕刻,精准落实裂缝体空间分布及连通性。该技术在某油田的实际应用结果表明,使用该方法预测的裂缝体结果与后续实际验证井的钻遇情况相符。此研究对开发后期高含水潜山裂缝型油藏有效挖潜剩余油具有很好的指导作用。
Abstract:Fractured carbonate reservoirs are highly heterogeneous, and the reservoir types are dominated by high-angle fractures. How to accurately characterize the spatial distribution characteristics of reservoirs in oilfield development and find remaining oil in structural highs is an urgent problem to be solved. Regarding carbonate buried hill fracture reservoir as research object, technology of quantitative prediction to delineate fracture reservoir in buried hill was applied using pre-stack azimuthal anisotropy. Different azimuth seismic amplitude attributes were used to predict fracture intensity by ellipse fitting, and then cross-plot analysis of predicted fracture intensity and interpreted single well Formation Microscanner Image(FMI) fracture were conducted to obtain fracture intensity cutoff values of fracture reservoir of different scales. Eventually, the purpose of quantitative carbonate fracture reservoir delineation can be achieved in combination with 3D visualization seed point tracking technology. Practical application shows that the method could enhance fracture reservoir exploration reliability, and the prediction was proved by drilling results.
-
表 1 裂缝密度地震各向异性强度统计
Table 1. Seismic anisotropy intensity statistics of fracture density
裂缝密度/% 地震各向异性强度 3.0 1.017 2.5 1.013 2.0 1.009 1.5 1.006 1.0 1.003 0.5 1.001 0 1 表 2 方位角度划分结果统计表
Table 2. Azimuth classified statistical results
中心方位角/(°) 方位角度范围/(°) 平均覆盖次数 38 0~76 18.87 87 67~106 18.88 122 107~137 18.89 159 138~180 18.88 表 3 R387井FMI裂缝解释成果
Table 3. The result of FMI fracture interpret in Well R387
井名 裂缝发育段 FMI解释有效孔隙度/% 各向异性预测裂缝强度 FMI测井解释裂缝级别 顶深/m 底深/m R387 3 065.0 3 074.4 5.0 1.195 Ⅰ 3 074.4 3 077.9 8.0 1.321 Ⅰ 3 077.9 3 083.5 6.0 1.347 Ⅰ 3 095.2 3 101.1 4.2 1.280 Ⅰ 3 101.1 3 102.0 3.5 1.314 Ⅰ 3 102.0 3 104.8 6.0 1.372 Ⅲ 3 121.8 3 128.0 1.8 1.252 Ⅰ 3 151.0 3 155.1 4.0 1.396 Ⅰ 3 223.0 3 228.3 7.2 1.358 Ⅰ 3 229.0 3 234.0 5.6 1.262 Ⅰ 3 266.5 3 278.0 5.5 1.209 Ⅰ 3 297.5 3 298.4 3.2 1.195 Ⅱ 3 338.9 3 340.6 5.5 1.311 Ⅰ 3 342.4 3 345.4 7.6 1.216 Ⅰ 3 368.0 3 372.8 8.0 1.265 Ⅰ 3 414.3 3 417.4 5.5 1.156 Ⅰ 3 436.9 3 438.3 5.0 1.198 Ⅰ 3 438.3 3 455.4 9.0 1.215 Ⅰ 3 457.7 3 459.0 8.0 1.194 Ⅰ 3 466.3 3 468.0 4.0 1.347 Ⅰ 3 468.0 3 471.6 8.0 1.265 Ⅰ 3 473.1 3 475.0 7.0 1.210 Ⅰ 3 496.2 3 499.5 5.6 1.268 Ⅰ 3 507.3 3 509.1 2.3 1.248 Ⅱ 3 251.0 3 255.8 1.7 1.133 Ⅰ 3 256.7 3 259.7 3.8 1.142 Ⅱ 3 262.0 3 264.9 4.0 1.187 Ⅱ 3 296.2 3 297.5 2.8 1.207 Ⅱ 3 298.4 3 300.0 3.2 1.177 Ⅱ 3 316.6 3 318.3 2.0 1.180 Ⅱ 3 320.0 3 323.0 2.4 1.164 Ⅱ 3 326.5 3 328.4 2.0 1.209 Ⅲ 3 337.1 3 338.9 3.0 1.265 Ⅱ 3 294.2 3 295.2 1.6 1.199 Ⅲ 表 4 叠前各向异性裂缝密度解释成果
Table 4. Prestack anisotropic fracture density
储层分类 各项异性裂缝强度(R) 有效孔隙度(Φ)/% Ⅰ级裂缝储层 R>1.19 Φ>4 Ⅱ级裂缝储层 1.15<R≤1.19 2<Φ≤4 Ⅲ级裂缝储层 1.07<R≤1.15 Φ≤2 -
[1] 龚伟, 刘军, 林新, 等. 基于叠前频变AVO反演的碳酸盐岩缝洞储层含气性预测技术研究与应用[C]//中国石油学会2019年物探技术研讨会论文集, 2019: 955-958.
[2] 王震,邓光校,文欢,等. 塔河油田碳酸盐岩叠前裂缝预测技术应用分析[J]. 工程地球物理学报,2018,15(1):65-72. doi: 10.3969/j.issn.1672-7940.2018.01.010
[3] 刘军,任丽丹,龚伟. 叠前各向异性裂缝预测技术在顺南地区碳酸盐岩领域中的应用研究[J]. 工程地球物理学报,2017,14(4):463-467. doi: 10.3969/j.issn.1672-7940.2017.04.013
[4] 张志军,肖广锐,李尧. 渤中19-6油田变质岩潜山内幕裂缝地震响应特征及预测技术[J]. 石油地球物理勘探,2021,56(4):845-852.
[5] 孙夕平,张昕,李璇,等. 基于叠前深度偏移的基岩潜山风化淋滤带储层预测[J]. 岩性油气藏,2021,33(1):220-228. doi: 10.12108/yxyqc.20210120
[6] 孙致学,姜宝胜,肖康,等. 基于新型集成学习算法的基岩潜山油藏储层裂缝开度预测算法[J]. 油气地质与采收率,2020,27(3):32-38.
[7] 徐振旺. 地震资料叠前裂缝预测技术在静北潜山的应用[J]. 长江大学学报(自然科学版),2019,16(3):16-22.
[8] 邓攀,陈孟晋,杨泳. 分形方法对裂缝性储集层的定量预测研究和评价[J]. 大庆石油地质与开发,2006,25(2):18-20. doi: 10.3969/j.issn.1000-3754.2006.02.006
[9] 周新桂,张林炎,屈雪峰,等. 沿河湾探区低渗透储层构造裂缝特征及分布规律定量预测[J]. 石油学报,2009,30(2):195-200. doi: 10.3321/j.issn:0253-2697.2009.02.006
[10] 鞠玮,侯贵廷,冯胜斌,等. 鄂尔多斯盆地庆城-合水地区延长组长63储层构造裂缝定量预测[J]. 地学前缘,2014,21(6):310-320.
[11] 詹彦,侯贵廷,孙雄伟,等. 库车坳陷东部侏罗系砂岩构造裂缝定量预测[J]. 高校地质学报,2014,20(2):294-302. doi: 10.3969/j.issn.1006-7493.2014.02.014
[12] 王珂,戴俊生,王俊鹏,等. 塔里木盆地克深2气田储层构造裂缝定量预测[J]. 大地构造与成矿学,2016,40(6):1123-1135.
[13] 张继标,刘士林,戴俊生,等. 塔里木盆地玉北地区奥陶系储层构造裂缝定量预测[J]. 地质力学学报,2019,25(2):31-40.
[14] 王蓓,刘向君,司马立强,等. 磨溪龙王庙组碳酸盐岩储层多尺度离散裂缝建模技术及其应用[J]. 岩性油气藏,2019,31(2):124-133. doi: 10.12108/yxyqc.20190214
[15] 周新桂,邓宏文,操成杰,等. 储层构造裂缝定量预测研究及评价方法[J]. 地球学报,2003,24(2):79-84.
[16] 徐会永,冯建伟,葛玉荣. 致密砂岩储层构造裂缝形成机制及定量预测研究进展[J]. 地质力学学报,2013,19(4):377-384. doi: 10.3969/j.issn.1006-6616.2013.04.003
[17] 周文,尹太举,张亚春,等. 蚂蚁追踪技术在裂缝预测中的应用:以青西油田下沟组为例[J]. 岩性油气藏,2015,27(6):111-118. doi: 10.3969/j.issn.1673-8926.2015.06.015
[18] 王建君,李井亮,李林,等. 基于叠后地震数据的裂缝预测与建模:以太阳-大寨地区浅层页岩气储层为例[J]. 岩性油气藏,2020,32(5):122-132. doi: 10.12108/yxyqc.20200513
[19] 周江辉,周路. 地震属性裂缝预测方法及应用[J]. 石化技术,2021,28(11):130-131. doi: 10.3969/j.issn.1006-0235.2021.11.060
[20] 印兴耀,马正乾,向伟,等. 地震岩石物理驱动的裂缝预测技术研究现状与进展(Ⅰ):裂缝储层岩石物理理论[J]. 石油物探,2022,61(2):183-204.
[21] 石雪峰,张昊,赵才顺. 基于叠前地震数据的AVAZ裂缝预测技术及应用[J]. 石化技术,2022,29(1):129-130. doi: 10.3969/j.issn.1006-0235.2022.01.060
[22] 饶溯,孙福亭,汪洪强,等. 基于方位各向异性理论的地震预测裂缝方法及应用综述[J]. 能源与环保,2021,43(5):152-156.
[23] 任涛,秦军,周阳,等. 利用叠前方位各向异性预测准噶尔盆地西北缘车476井区火山岩裂缝[J]. 石油地质与工程,2021,35(1):1-7. doi: 10.3969/j.issn.1673-8217.2021.01.002
[24] 熊晓军,张鑫,张本健,等. 裂缝融合分析的窄方位叠前裂缝预测技术[J]. 石油地球物理勘探,2021,56(5):1150-1156. doi: 10.13810/j.cnki.issn.1000-7210.2021.05.021
[25] 张璐,何峰,陈晓智,等. 基于倾角导向滤波控制的似然属性方法在断裂识别中的定量表征[J]. 岩性油气藏,2020,32(2):108-114.
[26] 赵才顺,万欢,张昊,等. 纵波方位各向异性正演模拟及叠前裂缝检测应用研究:以鄂尔多斯盆地致密砂岩气区块为例[J]. 地球物理学进展,2019,34(1):257-265. doi: 10.6038/pg2019BB0472
[27] 姜晓宇,张研,甘利灯,等. 花岗岩潜山裂缝地震预测技术[J]. 石油地球物理勘探,2020,55(3):694-704. doi: 10.13810/j.cnki.issn.1000-7210.2020.03.026
[28] 丁燕,杜启振,YASIN Q,等. 基于深度学习的裂缝预测在S区潜山碳酸盐岩储层中的应用[J]. 石油物探,2020,59(2):267-275. doi: 10.3969/j.issn.1000-1441.2020.02.013
[29] 章惠,关达,向雪梅,等. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏,2018,30(1):133-139. doi: 10.3969/j.issn.1673-8926.2018.01.013
[30] 陈彦虎,蒋龙聪,胡俊,等. 页岩储层裂缝型孔隙定量预测的新方法[J]. 地质科技情报,2018,37(1):115-121.
[31] 李娟,孙松领,陈广坡,等. 海拉尔盆地浅变质岩潜山岩性控储特征及储层岩性序列识别[J]. 岩性油气藏,2018,30(4):26-36.
[32] 肖小玲,靳秀菊,张翔,等. 基于常规测井与电成像测井多信息融合的裂缝识别[J]. 石油地球物理勘探,2015,50(3):542-547. doi: 10.13810/j.cnki.issn.1000-7210.2015.03.023
[33] 陈义国,赵谦平,杨文博,等. 双侧向测井裂缝孔隙模型考察与改进[J]. 大庆石油地质与开发,2011,30(4):171-174. doi: 10.3969/J.ISSN.1000-3754.2011.04.040
[34] 李善军,肖承文,汪涵明,等. 裂缝的双侧向测井响应的数学模型及裂缝孔隙度的定量解释[J]. 地球物理学报,1996,39(6):845-852. doi: 10.3321/j.issn:0001-5733.1996.06.014