-
摘要:
天然气水合物是一种赋存在海底沉积物孔隙中的清洁能源,含量巨大,具有很好的开发前景和研究价值。垂直井作为开采水合物的一种主要方式,在开采过程中,会改变天然气水合物沉积层的环境条件,随着开采井释放出大量的气体和水,在地层中形成超压,过高的孔隙压力会降低沉积物的胶结强度,破坏沉积层的稳定性,诱发海底滑坡。借助Flac3D软件建立高精度的海底斜坡模型,基于有限差分法对垂直多井动态开采水合物过程中的边坡稳定性进行了数值模拟,模拟了不同开采方案条件下采用多井开采,水合物分解量、开采井压变化等不同影响因素产生的地层力学响应和位移变化,基于安全系数法进对于水合物开采引起的边坡稳定性进行了初步分析。结果表明:多井开采条件下,随着水合物分解程度的不断增大,海底斜坡稳定性逐渐降低,当水合物分解程度达到80%时,安全系数会降低到1.0以下,边坡会失稳;随着井压的不断降低,海底斜坡稳定性同样逐渐降低,当开采井压降低到4 Mpa以下时,安全系数会降低到1.05以下,边坡变为欠稳定状态,存在发生海底滑坡的风险。
Abstract:Natural gas hydrate is a clean energy occurring in the pores of seabed sediments. It has a large content and does not cause great harm to the environment, thus it has a good prospect and research value. Vertical wells as a main way of gas hydrates mining, the exploitation activities may alter the environmental conditions of the natural gas hydrate sediments, under which a large amount of gas and water would be released and result in overpressure in the strata, and the excessive pore pressure could reduce sediment consolidation strength, destroy the stability of the sediments, and induce submarine landslides. We established a high-precision underwater slope model with the aid of Flac3D software, and numerically simulated the slope stability in the process of vertical multi-well dynamic hydrate mining in finite difference method. The strata mechanical response and displacement changes caused by different influencing factors such as hydrate decomposition and well pressure change under different exploitation schemes were simulated. Using the safety factor method, the slope stability caused by hydrate mining was preliminarily analyzed. The results show that the stability of submarine slope decreases gradually with the increasing degree of hydrate decomposition under multi-well mining conditions. When the degree of hydrate decomposition reaches 80%, the safety factor will be lower than 1.0, and the slope will become unstable. With the decrease in well pressure, the stability of submarine slope also decreases gradually. When the well pressure drops below 4 Mpa, the safety factor will drop below 1.05, and the slope becomes less stable with a risk of submarine landslide.
-
表 1 稳定性系数与滑坡稳定状态对应关系
Table 1. Corresponding relationship between stability coefficient and stable state of landslide
滑坡安全系数 滑坡稳定状态 不稳定 欠稳定 基本稳定 稳定 表 2 设计的水合物分解模拟方案
Table 2. Designed hydrate decomposition simulation scheme
方案序号 详细描述 方案1 含水合物但水合物未分解; 方案2 2、5、8区分解15%,其他区域未分解; 方案3 2、5、8区分解30%,1、3、4、6、7、9区分解15%,
0、10区域未分解;方案4 2、5、8区分解50%,1、3、4、6、7、9区分解30%,
0、10区域分解15;方案5 2、5、8区分解60%,1、3、4、6、7、9区分解50%,
0、10区域分解30%;方案6 2、5、8区分解80%,1、3、4、6、7、9区分解60%,
0、10区域分解50%;方案7 2、5、8区分解100%,1、3、4、6、7、9区分解80%,
0、10区域分解60%;表 3 不同分解程度下的孔隙压力
Table 3. Pore pressure at different decomposition levels
分解程度/% 0 25 50 75 100 超孔隙压力/MPa 0 3.0 7.25 11.45 13.0 表 4 水合物剪切强度参数表
Table 4. The shear strength parameters of hydrate
土层信息 抗剪强度 内聚力(c)/
kPa内摩擦角(ϕ)/(°) 均质水合物沉积层 21 22 水合物不同分解程度的参数 未分解 40 35 分解10% 35 35 分解15% 32 35 分解20% 30 35 分解30% 25 25 分解35% 22 20 分解40% 20 19 分解55% 18 15 分解60% 15 13 分解70% 10 10 分解80% 0 10 分解100% 0 3 -
[1] MOORE D G. Submarine slides[J]. Developments in Geotechnical Engineering,1978,14(3):563-604.
[2] PRIOR D B, COLEMAN J M. Active slides and flows in under consolidated marine-sediments on the slopes of the Mississippi delta [C]//SAXOV S and NIEUWENHIUS J K. Marine Slides and Other Mass Movements. New York: Plenum Press, 1982. 21-49.
[3] SAXOV S. Marine slides-Some introductory remarks[J]. Marine Geotechnology,1990,9(4):110-114.
[4] 胡光海. 东海陆坡海底滑坡识别及致滑因素影响研究[D]. 青岛: 中国海洋大学, 2010.
[5] 史慧杰,褚宏宪,高小慧. 海底斜坡稳定性研究进展及分析[J]. 海洋地质前沿,2013,29(3):42-45+59.
[6] 朱超祁,贾永刚,刘晓磊,等. 海底滑坡分类及成因机制研究进展[J]. 海洋地质与第四纪地质,2015,35(6):153-163.
[7] 刘锋. 南海北部陆坡天然气水合物分解引起的海底滑坡与环境风险评价[D]. 青岛: 中国科学院研究生院(海洋研究所), 2010.
[8] 杨晓云. 天然气水合物与海底滑坡研究[D]. 青岛: 中国石油大学(华东), 2010.
[9] 秦志亮. 南海北部陆坡块体搬运沉积体系的沉积过程、分布及成因研究[D]. 青岛: 中国科学院研究生院(海洋研究所), 2012.
[10] 张亮,栾锡武. 南海北部陆坡稳定性定量分析[J]. 地球物理学进展,2012,27(4):1443-1453. doi: 10.6038/j.issn.1004-2903.2012.04.019
[11] 马云. 南海北部陆坡区海底滑坡特征及触发机制研究[D]. 青岛: 中国海洋大学, 2014.
[12] 周念圻. 海域天然气水合物降压开采甲烷逸散的模拟研究[D]. 北京: 中国石油大学(北京), 2019.
[13] 唐常锐,徐秀刚,孙秉才,等. 天然气水合物分解诱发海底滑坡影响因素分析及致灾风险评价[J]. 海洋地质前沿,2021,37(5):14-21. doi: 10.16028/j.1009-2722.2021.021
[14] CHEN Y M,ZHANG L L,LIAO C C,et al. A two-stage probabilistic approach for the risk assessment of submarine landslides induced by gas hydrate exploitation[J]. Applied Ocean Research,2020,99(1):102158.
[15] NIXON M F,GROZIC J L H. Submarine slope failure due to gas hydrate dissociation:a preliminary quantification[J]. Canadian Geotechnical Journal,2007,44(3):314-325. doi: 10.1139/t06-121
[16] 赵华金,杨邦成. 有限元强度折减法在海底斜坡稳定性分析中的研究现状[J]. 中国水运,2019,19(5):173-174.
[17] 李志佳,张顶立,房倩,等. 基于强度折减法的土质边坡稳定性影响因素分析[J]. 隧道建设,2013,33(10):854-859.
[18] 费康, 彭劼. CAE分析大系: ABAQUS岩土工程实例详解[M]. 北京: 人民邮电出版社, 2020.