Distribution and source analysis of hydrocarbons in sediments of Zhenzhu Bay Mangrove Wetland in Guangxi
-
摘要:
为研究广西珍珠湾红树林湿地表层沉积物有机质中烃类化合物的分布特征及来源,于2021年9月采集珍珠湾红树林湿地表层沉积物样品13件,对沉积物中的正构烷烃和多环芳烃(PAHs)进行测试分析。分析结果表明:珍珠湾红树林湿地表层沉积物中正构烷烃的含量(干重)为362.17~10 390.72 ng/g,PAHs含量(干重)为7.76~28.06 ng/g,总体处于含量较低的水平;特征参数比值法分析结果显示,正构烷烃主要来源于陆源非浮水草本植物,未受石油及其衍生品的污染;PAHs具有大分子化合物占优势的特征,同分异构体比值法分析结果表明PAHs的潜在来源有石油、石油燃烧和煤炭草木燃烧,主成分分析-多元线性回归分析结果表明,其来源主要为混合燃烧源(>52%),其次为石油污染源;应用效应区间低/中值法对PAHs进行生态风险评价,结果表明PAHs生态风险处于较低水平。
Abstract:To study the distribution characteristics and sources of hydrocarbons in the surface sediments of Zhenzhu Bay Mangrove Wetland in Guangxi, South China, 13 surface sediments of the wetland were collected in September 2021 to test and analyze the normal alkanes and polycyclic aromatic hydrocarbons (PAHs) in the sediments. Results show that the content of n-alkanes (dry weight) in the surface sediments of the area was 362.17~10 390.72 ng/g, and the content of PAHs (dry weight) was 7.76~28.06 ng/g, which was generally at a low level. The n-alkanes were mainly come from terrestrial non-floating herbs and were not polluted by petroleum and its derivatives; PAHs were characteristic of dominant macromolecular compounds as shown in the characteristic parameter ratio method. The potential sources of PAHs were pertroleum, pertroleum combustion, and coal vegetation combustion as indicated in the isomer ratio method. In addition, the main source of PAHs was mixed combustion source (>52%), followed by oil pollution source, as revealed by the principal component analysis/linear regression analysis model (PCA-MLR). At last, the ecological risk of PAHs was at a low level as determined in the ecological risk evaluation of PAHs by the effect interval low/median method.
-
Key words:
- Zhenzhu Bay /
- n-alkanes /
- polycyclic aromatic hydrocarbons /
- source analysis
-
表 1 研究区表层沉积物正构烷烃特征参数
Table 1. The geochemical proxies of n-alkanes alkanes in surface sediments of the study area
分析
项目T-ALK/(ng/g) CPI1 CPI2 ∑T/∑M ACL TAR OEP AI Pmar-aq ZZ01 2 096.79 0.67 5.82 20.61 27.21 23.50 4.49 0.56 0.40 ZZ02 2 897.84 0.62 4.08 11.92 28.73 17.23 3.37 0.63 0.09 ZZ03 2 670.86 0.54 3.86 17.06 28.78 24.26 3.36 0.62 0.11 ZZ04 3 230.93 0.64 4.52 21.20 28.91 31.02 3.79 0.61 0.11 ZZ05 1 646.14 0.55 3.56 16.48 28.67 24.11 3.13 0.62 0.10 ZZ06 4 382.59 0.56 5.08 20.47 28.95 28.99 3.71 0.66 0.22 ZZ07 852.06 0.53 3.66 13.32 28.39 20.39 3.13 0.62 0.19 ZZ08 2 416.50 0.80 4.47 14.40 28.36 31.81 3.97 0.61 0.16 ZZ09 2 446.93 0.54 4.81 21.49 28.85 33.87 3.81 0.64 0.18 ZZ10 957.20 0.86 4.07 7.75 28.20 9.37 3.27 0.66 0.17 ZZ11 4 639.34 0.62 6.49 19.66 28.83 20.26 4.13 0.70 0.31 ZZ12 362.17 0.40 1.92 3.62 26.05 4.67 1.55 0.59 0.14 ZZ13 10 390.72 0.46 6.36 13.36 29.09 16.81 3.96 0.72 0.20 平均值 2 999.24 0.60 4.52 15.49 28.39 22.02 3.51 0.63 0.18 注:CPI1=×[(C15+C17+C19+C21)/(C14+C16+C18+C20)+(C15+C17+C19+C21)/(C14+C16+C18+C20+C22)];
CPI2=×[(C25+C27+C29+C31+C33+C35)/(C22+C24+C26+C28+C30+C32)+(C25+C27+C29+C31+C33+C35)/(C24+C26+C28+C30+C32+C34)];
∑T/∑M =(∑C25-35)/ (∑C15-21);ACL=(∑[Ci]×i)/∑[Ci]; TAR=(C27+C29+C31)/ (C15+C17+C19);
OEP=(C27+6×C29+C31)/(4×C28+4×C30);AI=C31/(C29+C31);Pmar-aq=(C23+C25)/(C23+C25+C27+C29+C31)表 2 研究区PAHs含量和检出率
Table 2. Concentrations and percentages of positive results of PAHs in the study area
PAHs 环数 检出率
/%含量/(ng/g) 最小值 最大值 平均值 中值 Nap 2 100 0.32 5.97 3.08 2.85 Flu 3 100 0.54 1.34 0.95 0.96 Phe 3 76.92 ND 3.31 2.06 1.88 Ant 3 38.46 ND 1.38 0.90 1.09 Fla 3 23.08 ND 3.50 2.27 1.81 Pyr 4 53.85 ND 3.78 2.17 1.85 BaA 4 30.77 ND 0.77 0.50 0.45 Chr 4 84.62 ND 2.16 0.80 0.56 BbF 4 84.62 ND 5.38 1.73 1.10 BkF 4 69.23 ND 2.07 0.81 0.61 BaP 5 100 0.56 6.57 1.42 1.05 DahA 5 15.38 ND 0.66 0.58 0.58 BghiP 6 100 0.67 4.40 1.83 1.58 IcdP 6 100 0.62 3.25 1.15 0.91 ∑2环PAHs 0.32 5.97 3.08 2.85 ∑3环PAHs 2.16 8.18 3.91 3.54 ∑4环PAHs 1.84 9.27 4.41 3.53 ∑5环PAHs 0.81 7.23 1.72 1.30 ∑6环PAHs 1.55 7.65 2.98 2.40 ∑14PAHs 7.76 28.06 13.01 10.39 注:ND为未检出。 表 3 中国其他地区红树林湿地PAHs含量
Table 3. PAHs content in mangrove wetlands in other regions of China
表 4 研究区表层沉积物中PAHs的主成分分析结果
Table 4. principal component analysis results of PAHs in surface sediments of the study area
因子 PC1 PC2 PC3 Nap −0.36 0.20 0.77 Flu 1.76 0.30 0.65 Phe 0.64 0.60 −0.13 Ant −0.05 0.85 0.09 Fla 0.18 0.63 0.60 Pyr 0.05 0.95 0.04 BaA 0.80 −0.21 −0.14 Chr 0.43 −0.33 −0.04 BbF 0.96 0.15 0.16 BkF 0.98 −0.08 −0.03 BaP 0.84 −0.19 −0.24 DahA 0.92 0.28 0.18 BghiP 0.96 0.24 0.14 IcdP −0.06 −0.21 0.88 表 5 研究区表层沉积物PAHs含量特征及生态风险标志水平
Table 5. PAHs content characteristics and ecological risk marker levels of surface sediments in the study area
PAHs 含量/(ng/g) 平均含量/(ng/g) 生态风险标志水平 ERL ERM Nap 0.32~5.97 3.08 160 2 100 Flu 0.54~1.34 0.95 19 540 Phe ND~3.31 2.06 240 1 500 Ant ND~1.38 0.90 85.3 1 100 Fla ND~3.50 2.27 600 5 100 Pyr ND~3.78 2.17 665 2 600 BaA ND~0.77 0.50 261 1 600 Chr ND~2.16 0.80 384 2 800 BbF ND~5.38 1.73 BkF ND~2.07 0.81 BaP 0.56~6.57 1.42 430 1 600 DahA ND~0.66 0.58 63.4 260 BghiP 0.67~4.40 1.83 IcdP 0.62~3.25 1.15 注:ND为未检出。 -
[1] ZHANG Y D,SU Y L,YU J L,et al. Anthropogenically driven differences in n-alkane distributions of surface sediments from 19 lakes along the middle Yangtze River,Eastern China[J]. Environmental Ence and Pollution Research,2019,26(22):22472-22484. doi: 10.1007/s11356-019-05536-w
[2] 邹艳梅,李沅蔚,纪灵,等. 渤海龙口湾沉积物中烃类物质的分布特征、来源解析及风险评价[J]. 环境科学研究,2020,33(9):2138-2147. doi: 10.13198/j.issn.1001-6929.2020.03.10
[3] BUSH R T,MCINERNEY F A. Leaf wax n-alkane distributions in and across modern plants:implications for paleoecology and chemotaxonomy[J]. Geochimica et Cosmochimica Acta,2013,117:161-179. doi: 10.1016/j.gca.2013.04.016
[4] 朱纯,潘建明,卢冰,等. 长江口及邻近海域现代沉积物中正构烷烃分子组合特征及其对有机碳运移分布的指示[J]. 海洋学报(中文版),2005,27(4):59-67. doi: 10.3321/j.issn:0253-4193.2005.04.008
[5] SVERDRUP L E,NIELSEN T,KROGH P H. Soil ecotoxicity of polycyclic aromatic hydrocarbons in relation to soil sorption,lipophilicity,and water solubility[J]. Environmental Ence and Technology,2002,36(11):2429-2435.
[6] FIELD R A,LESTER J N,BAEK S O,et al. A review of atmospheric polycyclic aromatic hydrocarbons:sources,fate and behavior[J]. Water Air and Soil Pollution,1991,60(3/4):279-300.
[7] KHALILI N R,SCHEFF P A,HOLSEN T M. PAH source fingerprints for coke ovens,diesel and,gasoline engines,highway tunnels,and wood combustion emissions[J]. Atmospheric Environment,1995,29:533-542. doi: 10.1016/1352-2310(94)00275-P
[8] MCLEOD E,CHMURA G L,BOUILLON S,et al. A blueprint for blue carbon:toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2[J]. Frontiers in Ecology and the Environment,2011,7:362-370.
[9] COSTANZA R,ARGE,GROOT R D,et al. The value of the world's ecosystem services and natural capital(cover story)[J]. Nature,1997,25(1):3-15.
[10] CAI Y M,WU J D,ZHANG Y L,et al. Polycyclic aromatic hydrocarbons in surface sediments of mangrove wetlands in Shantou,South China[J]. Journal of Geochemical Exploration,2019,205:106332. doi: 10.1016/j.gexplo.2019.106332
[11] GARCIA M R,MARTINS C C. A systematic evaluation of polycyclic aromatic hydrocarbons in South Atlantic subtropical mangrove wetlands under a coastal zone development scenario[J]. Journal of Environmental Management,2021,277:111421. doi: 10.1016/j.jenvman.2020.111421
[12] HUANG Q,ZHU Y X,WU F,et al. Parent and alkylated polycyclic aromatic hydrocarbons in surface sediments of mangrove wetlands across Taiwan Strait,China:characteristics,sources and ecological risk assessment[J]. Chemosphere,2021,265:129168. doi: 10.1016/j.chemosphere.2020.129168
[13] JIANG S,SU Y,LU H L,et al. Influence of polycyclic aromatic hydrocarbons on nitrate reduction capability in mangrove sediments[J]. Marine Pollution Bulletin,2017,122(1):366-375.
[14] 陈东平,沈文杰,罗松英,等. 南三岛红树林沉积物汞累积与矿物特征及其关系分析[J]. 生态环境学报,2020,29(11):2279-2287. doi: 10.16258/j.cnki.1674-5906.2020.11.016
[15] 林武辉,莫敏婷,宁秋云,等. 广西防城港核电周边红树林沉积物中放射性核素是否存在富集现象?[J]. 海洋环境科学,2020,39(5):676-683. doi: 10.12111/j.mes.20190091
[16] 牛安逸,高一飞,徐颂军. 重金属污染对珠江口红树林表层沉积物碳含量的影响[J]. 生态学报,2020,40(23):8549-8558.
[17] DENG J,GUO P Y,ZHANG X Y,et al. An evaluation on the bioavailability of heavy metals in the sediments from a restored mangrove forest in the Jinjiang Estuary,Fujian,China[J]. Ecotoxicology and Environmental Safety,2019,180:501-508. doi: 10.1016/j.ecoenv.2019.05.044
[18] CHAI M W,SHEN X X,LI R L,et al. The risk assessment of heavy metals in Futian mangrove forest sediment in Shenzhen Bay (South China) based on SEM-AVS analysis[J]. Marine Pollution Bulletin,2015,97(1/2):431-439.
[19] SAHU S K,KATHIRESAN K. The age and species composition of mangrove forest directly influence the net primary productivity and carbon sequestration potential[J]. Biocatalysis and Agricultural Biotechnology,2019,20:101235. doi: 10.1016/j.bcab.2019.101235
[20] 王亚丽,张芬芬,陈小刚,等. 海底地下水排放对典型红树林蓝碳收支的影响:以广西珍珠湾为例[J]. 海洋学报,2020,42(10):37-46.
[21] 黄玥,黄元辉. 广西珍珠湾表层沉积硅藻分布特征[J]. 海洋科学进展,2016,34(3):411-420.
[22] 赖廷和,何斌源,史小芳,等. 广西珍珠湾桐花树群落凋落物碳输出动态研究[J]. 泉州师范学院学报,2015,33(6):1-7. doi: 10.3969/j.issn.1009-8224.2015.06.001
[23] 李凤,徐刚,贺行良,等. 东海近岸表层沉积物中正构烷烃的组成、分布及来源分析[J]. 海洋环境科学,2016,35(3):398-403. doi: 10.13634/j.cnki.mes.2016.03.012
[24] 袁红明,叶思源,高茂生,等. 黄河三角洲南部湿地表层土壤中多环芳烃的分布特征及生态风险评价[J]. 海洋地质前沿,2011,27(2):24-28.
[25] EGLINTON G,HAMILTON R J. Leaf epicuticular waxes[J]. Science,1967,156(3780):1322-1335. doi: 10.1126/science.156.3780.1322
[26] RIELEY G,COLLIER R J,JONE D M,et al. Sources of sedimentary lipids decuced from stable carbon isotope analyses of individual compounds[J]. Nature,1991,352:425-427. doi: 10.1038/352425a0
[27] DUAN Y. Organic geochemistry of recent marine sediments from the Nansha Sea,China[J]. Organic Geochemistry,2000,31(2/3):159-167. doi: 10.1016/S0146-6380(99)00135-7
[28] SILLIMAN J E,SCHELSKE C L. Saturated hydrocarbons in the sediments of Lake Apopka,Florida[J]. Organic Geochemistry,2003,34(3):253-260.
[29] WANG Z,LIU W. Carbon chain length distribution in n-alkyl lipids:a process for evaluating source inputs to Lake Qinghai[J]. Organic Ceochemistry,2012,50:36-43. doi: 10.1016/j.orggeochem.2012.06.015
[30] 赵美训,张玉琢,邢磊,等. 南黄海表层沉积物中正构烷烃的组成特征、分布及其对沉积有机质来源的指示意义[J]. 中国海洋大学学报(自然科学版),2011,41(4):90-96.
[31] SNEDAKER S C,GLYNN P W,RUMBOLD D G,et al. Distribution of n-alkanes in marine samples from Southeast Florida[J]. Marine Pollution Bulletin,1995,30(1):83-89. doi: 10.1016/0025-326X(94)00147-2
[32] 陆志强. 多环芳烃对秋茄幼苗的生理生态效应及其在九龙江口红树林湿地的含量与分布[D].厦门: 厦门大学, 2002.
[33] 蔡小滨,薛丹,李冬,等. 香港内后海湾拉姆萨尔湿地表层沉积物中多环芳烃(PAHs)的分布及来源解析[J]. 环境化学,2013,32(3):451-458.
[34] 曾小康,李凤兰,周凯,等. 深圳坝光红树林沉积物和植物多环芳烃的分布[J]. 环境科学与技术,2013,36(2):368-373.
[35] ZHANG D L,LIU N,YIN P,et al. Characterization,sources and ecological risk assessment of polycyclic aromatic hydrocarbons in surface sediments from the mangroves of China[J]. Wetlands Ecology and Management,2016,25(1):1-13.
[36] DAHLE S,SAVINOV V M,MATISHOV G G,et al. Polycyclic aromatic hydrocarbons(PAHs)in bottom sediments of the Kara Sea shelf,Gulf of Ob and Yenisei Bay[J]. Sci Total Environ,2003,306:57-71. doi: 10.1016/S0048-9697(02)00484-9
[37] YUNKER M B,MACDONALD R W,VINGAZAN R,et al. PAHs in the Fraser River Basin:a critical appraisal of PAH ratios as indicators of PAH source and composition[J]. Organic Geochemistry,2002,33(4):489-515. doi: 10.1016/S0146-6380(02)00002-5
[38] 李加付,刘少鹏,刘相敏,等. 渤海及邻近海域表层沉积物中多环芳烃的来源解析[J]. 海洋环境科学,2015,34(3):337-342,353.
[39] LONG E R,MACDONALD D D,SMITH S L,et al. Incidence of adverse biological effects with ranges of chemical concent rations in marine and estuarine sediments[J]. Environ Manage,1955,19(1):81-97.