海底冷泉系统氧化还原环境重建方法研究进展

周渝程, 曹红, 耿威, 刘晨晖, 张喜林, 翟滨, 张现荣, 陈烨, 吕泰衡, 曹又文, 张栋, 闫大伟, 孙治雷. 海底冷泉系统氧化还原环境重建方法研究进展[J]. 海洋地质前沿, 2023, 39(10): 1-13. doi: 10.16028/j.1009-2722.2022.169
引用本文: 周渝程, 曹红, 耿威, 刘晨晖, 张喜林, 翟滨, 张现荣, 陈烨, 吕泰衡, 曹又文, 张栋, 闫大伟, 孙治雷. 海底冷泉系统氧化还原环境重建方法研究进展[J]. 海洋地质前沿, 2023, 39(10): 1-13. doi: 10.16028/j.1009-2722.2022.169
ZHOU Yucheng, CAO Hong, GENG Wei, LIU Chenhui, ZHANG Xilin, ZHAI Bin, ZHANG Xianrong, CHEN Ye, LYU Taiheng, CAO Youwen, ZHANG Dong, YAN Dawei, SUN Zhilei. Research progress on reconstruction method of redox conditions in submarine seafloor cold seeps[J]. Marine Geology Frontiers, 2023, 39(10): 1-13. doi: 10.16028/j.1009-2722.2022.169
Citation: ZHOU Yucheng, CAO Hong, GENG Wei, LIU Chenhui, ZHANG Xilin, ZHAI Bin, ZHANG Xianrong, CHEN Ye, LYU Taiheng, CAO Youwen, ZHANG Dong, YAN Dawei, SUN Zhilei. Research progress on reconstruction method of redox conditions in submarine seafloor cold seeps[J]. Marine Geology Frontiers, 2023, 39(10): 1-13. doi: 10.16028/j.1009-2722.2022.169

海底冷泉系统氧化还原环境重建方法研究进展

  • 基金项目: 国家自然科学基金“海洋甲烷拦截带对冷泉流体的消耗研究:来自南海东沙海域的观测与研究”(42176057);崂山实验室科技创新项目“适于海底水合物资源探测的爬行车作业平台研制”(LSKJ202203504);山东省自然科学基金“冲绳海槽冷泉-热液流体溶解碳源/汇效应及对深海碳循环的影响”(ZR2021MD049);中国地质调查局项目“CSHC中北部海洋区域地质调查”(DD20230402)
详细信息
    作者简介: 周渝程(1997—),男,在读硕士,主要从事深海极端环境成岩机理方面的研究工作. E-mail:zhouyucheng0102@163.com
    通讯作者: 孙治雷(1975—),男,博士,研究员,主要从事深海矿产资源调查评价和成矿/藏机理方面的研究工作. E-mail:zhileisun@yeah.net
  • 中图分类号: P736

Research progress on reconstruction method of redox conditions in submarine seafloor cold seeps

More Information
  • 冷泉活动是现代深海极端环境系统之一,其在天然气水合物资源勘探、全球气候变化、极端环境生命活动等方面具有重要的科学研究意义。重建海底冷泉区氧化还原环境是研究其中生物地球化学过程、揭示甲烷渗漏活动特征的重要途径。近年来,大量矿物学及地球化学指标在冷泉系统氧化还原条件的恢复研究中获得了成功的应用。在前人研究的基础上,对自生矿物学标志、稀土元素、氧化还原敏感元素(Mo、U、Fe)和稳定同位素(钼同位素δ98Mo、铁同位素δ56Fe、硫同位素δ34S)等不同指标对氧化还原环境变化的响应机制进行了系统总结,从测试分析方法、后期成岩改造、单一指标的多解性等多个方面探讨了各指标的影响因素和当前仍存在的问题,并指出了未来该领域需进一步加强的关键研究方向。

  • 加载中
  • 图 1  冷泉形成模式

    Figure 1. 

    图 2  海洋沉积环境的地球化学分带

    Figure 2. 

    图 3  意大利亚平宁山脉北部冷泉碳酸盐岩稀土元素Ce/Ce*与Pr/Pr*关系图

    Figure 3. 

    图 4  MoEF-UEF富集系数共变反映氧化还原条件和颗粒传输

    Figure 4. 

    图 5  碳酸盐岩结核(三角形)和沉积物(圆形)中δ98Mo与CRS含量(a)以及δ98Mo与Mo含量(b)之间的关系

    Figure 5. 

    图 6  南海北部天然气水合物赋存区3个站位CRS与黄铁矿的含量与同位素值

    Figure 6. 

    图 7  OSR控制的沉积物孔隙水与冷泉重晶石硫酸根的多硫同位素对比

    Figure 7. 

    表 1  不同指标指示的沉积环境和影响因素

    Table 1.  Sedimentary environment indicated by different indices and their influencing factors

    指标沉积环境影响因素
    矿物学标志 碳酸盐矿物 偏氧化环境:文石
    还原环境:方解石、白云石
    只能对氧化还原环境进行粗略的重建;受是否为原位埋藏、后期氧化、重结晶、二次生长、成岩蚀变等因素影响
    草莓状黄铁矿 氧化-次氧化环境:平均粒径为(7.7±4.1) µm,有10%~50%的粒径超过10 µm
    硫化环境:平均粒径为(5.0±1.7) µm,并且其中
    仅约4%的黄铁矿粒径可以长到10 µm以上
    稀土元素 Ce异常 氧化环境:Ce负异常
    缺氧环境:无Ce异常或Ce正异常
    容易受到成岩作用的影响;测试分析过程中容易与陆源碎屑物质的稀土元素发生混染;此外,富含有机质的高碱度流体也可以产生Ce负异常,造成多解性
    氧化还原
    敏感元素
    Mo含量 有限的硫化环境:2~25 μg/g
    长期稳定的硫化环境:>100 μg/g
    受有机质和铁锰氧化物的吸附作用、沉积速率、环境开放与否等因素影响
    MoEF/UEF 氧化-次氧化环境:(0.1~0.3)×现代海水
    缺氧环境:>1×现代海水
    硫化环境:(3~10)×现代海水
    受测试样品中Al元素含量的影响。异常低的Al元素含量会导致富集系数偏高
    Fe的化学种 氧化环境:自生Fe以Fe3+为主
    还原环境:自生Fe以Fe2+为主
    受Fe含量、结晶度(如是否为无定形状态)、黏土矿物含量等因素影响
    稳定同位素 Mo同位素 氧化环境:同位素分馏较大
    厌氧硫化环境:同位素分馏小
    容易受仪器测试精度影响
    S同位素 厌氧硫化环境:S同位素分馏程度小,硫化物矿物
    δ34S值偏高
    受甲烷渗漏持续时间、Fe的供给、硫的歧化作用等影响
    Fe同位素 氧化条件:Fe同位素值较高
    还原条件:Fe同位素值较低
    受Fe的瑞利分馏、不完全氧化、后期成岩作用等众多因素影响
    下载: 导出CSV

    表 2  沉积物中Mo含量对水体状态的指示

    Table 2.  Indication of water column status by Mo content in sediments

    Mo含量/(μg/g)水体状态
    2~25硫化环境,但H2S仅局限于孔隙水
    25~100复杂多变的环境
    >100长期稳定的硫化环境
    下载: 导出CSV
  • [1]

    BOETIUS A,WENZHÖFER F. Seafloor oxygen consumption fuelled by methane from cold seeps[J]. Nature Geoscience,2013,6(9):725-734. doi: 10.1038/ngeo1926

    [2]

    SUESS E. Marine cold seeps and their manifestations:geological control,biogeochemical criteria and environmental conditions[J]. International Journal of Earth Sciences,2014,103(7):1889-1916. doi: 10.1007/s00531-014-1010-0

    [3]

    孙治雷,魏合龙,王利波,等. 海底冷泉系统的碳循环问题及探测[J]. 应用海洋学学报,2016,35(3):442-450. doi: 10.3969/J.ISSN.2095-4972.2016.03.017

    [4]

    WOODSIDE J M,GARRISON R E,MOORE J C,et al. Preface to thematic issue on hydrocarbon seeps in marginal seas[J]. Geo-Marine Letters,2004,24(3):133-134.

    [5]

    Judd A G,Hovland M,Dimitrov L I,et al. The geological methane budget at continental margins and its influence on climate change[J]. Geofluids,2002,2(2):109-126. doi: 10.1046/j.1468-8123.2002.00027.x

    [6]

    吴自军,任德章,周怀阳. 海洋沉积物甲烷厌氧氧化作用(AOM)及其对无机硫循环的影响[J]. 地球科学进展,2013,28(07):765-773. doi: 10.11867/j.issn.1001-8166.2013.07.0765

    [7]

    FENG D,QIU J W,HU Y,et al. Cold seep systems in the South China Sea:an overview[J]. Journal of Asian Earth Sciences,2018,168:3-16. doi: 10.1016/j.jseaes.2018.09.021

    [8]

    VALENTINE D L,KASTNER M,WARDLAW G D,et al. Biogeochemical investigations of marine methane seeps,Hydrate Ridge,Oregon[J]. Journal of Geophysical Research:Biogeosciences,2005,110(G2):G02005.

    [9]

    CAO H,SUN Z L,WU N Y,et al. Mineralogical and geochemical records of seafloor cold seepage history in the northern Okinawa Trough,East China Sea[J]. Deep Sea Research Part I:Oceanographic Research Papers,2020,155:103165. doi: 10.1016/j.dsr.2019.103165

    [10]

    XU C L,WU N Y,SUN Z L,et al. Assessing methane cycling in the seep sediments of the mid-Okinawa Trough:insights from pore-water geochemistry and numerical modeling[J]. Ore Geology Reviews,2021,129:103909. doi: 10.1016/j.oregeorev.2020.103909

    [11]

    SATO H,HAYASHI K I,OGAWA Y,et al. Geochemistry of deep sea sediments at cold seep sites in the Nankai Trough:insights into the effect of anaerobic oxidation of methane[J]. Marine Geology,2012,323/325:47-55. doi: 10.1016/j.margeo.2012.07.013

    [12]

    SOLOMON E A,KASTNER M,JANNASCH H,et al. Dynamic fluid flow and chemical fluxes associated with a seafloor gas hydrate deposit on the northern Gulf of Mexico slope[J]. Earth and Planetary Science Letters,2008,270(1/2):95-105.

    [13]

    YANG K H,ZHU Z M,DONG Y H,et al. Evolution and diagenetic implications of framboids in the methane-related carbonates of the northern Okinawa Trough[J]. Acta Oceanologica Sinica,2021,40(12):114-124. doi: 10.1007/s13131-021-1869-0

    [14]

    TONG H P,FENG D,PECKMANN J,et al. Environments favoring dolomite formation at cold seeps:a case study from the Gulf of Mexico[J]. Chemical Geology,2019,518:9-18. doi: 10.1016/j.marpetgeo.2021.105020

    [15]

    DENG Y N,CHEN F,HU Y,et al. Methane seepage patterns during the Middle Pleistocene inferred from molybdenum enrichments of seep carbonates in the South China Sea[J]. Ore Geology Reviews,2020,125:103701. doi: 10.1016/j.oregeorev.2020.103701

    [16]

    HU Y,FENG D,CHEN L Y,et al. Using iron speciation in authigenic carbonates from hydrocarbon seeps to trace variable redox conditions[J]. Marine and Petroleum Geology,2015,67:111-119. doi: 10.1016/j.marpetgeo.2015.05.001

    [17]

    林杞. 南海北部天然气水合物赋存区沉积物中自生矿物特征及其硫酸盐—甲烷转换带指示意义[D]. 武汉: 中国地质大学(武汉), 2016.

    [18]

    HAAS A,PECKMANN J,ELVERT M,et al. Patterns of carbonate authigenesis at the Kouilou pockmarks on the Congo deep-sea fan[J]. Marine Geology,2010,268(1/4):129-136.

    [19]

    FENG D,ROBERTS H H,JOYE S B,et al. Formation of low-magnesium calcite at cold seeps in an aragonite sea[J]. Terra Nova,2014,26(2):150-156. doi: 10.1111/ter.12081

    [20]

    NAEHR T H,EICHHUBL P,ORPHAN V J,et al. Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments:a comparative study[J]. Deep Sea Research Part II:Topical Studies in Oceanography,2007,54(11/13):1268-1291.

    [21]

    WARREN J. Dolomite:occurrence,evolution and economically important associations[J]. Earth-Science Reviews,2000,52(1/3):1-81.

    [22]

    SUN Z L,WU N Y,CAO H,et al. Hydrothermal metal supplies enhance the benthic methane filter in oceans:an example from the Okinawa Trough[J]. Chemical Geology,2019,525:190-209. doi: 10.1016/j.chemgeo.2019.07.025

    [23]

    张现荣,孙治雷,魏合龙,等. 自生黄铁矿的微生物成矿机理及对冷泉泄漏的指示意义[J]. 海洋地质与第四纪地质,2017,37(2):25-32.

    [24]

    常华进,储雪蕾. 草莓状黄铁矿与古海洋环境恢复[J]. 地球科学进展,2011,26(5):475-481.

    [25]

    WILKIN R T,BARNES H L,BRANTLEY S L. The size distribution of framboidal pyrite in modern sediments:an indicator of redox conditions[J]. Geochimica et Cosmochimica Acta,1996,60(20):3897-3912. doi: 10.1016/0016-7037(96)00209-8

    [26]

    RICKARD D. Sedimentary pyrite framboid size-frequency distributions:a meta-analysis[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2019,522:62-75.

    [27]

    PALOMARES R M,HERNÁNDEZ R L,FRÍAS J M. Mechanisms of trace metal enrichment in submarine,methane-derived carbonate chimneys from the Gulf of Cadiz[J]. Journal of Geochemical Exploration,2012,112:297-305. doi: 10.1016/j.gexplo.2011.09.011

    [28]

    TAYLOR S R, MCLENNAN S M. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell Scientific Publication, 1985.

    [29]

    ELDERFIELD H,UPSTILL-GODDARD R,SHOLKOVITZ E R. The rare earth elements in rivers,estuaries,and coastal seas and their significance to the composition of ocean waters[J]. Geochimica et Cosmochimica Acta,1990,54(4):971-991. doi: 10.1016/0016-7037(90)90432-K

    [30]

    FENG D,CHEN D F,PECKMANN J. Rare earth elements in seep carbonates as tracers of variable redox conditions at ancient hydrocarbon seeps[J]. Terra Nova,2009,21(1):49-56. doi: 10.1111/j.1365-3121.2008.00855.x

    [31]

    MOFFETT J W. Microbially mediated cerium oxidation in sea water[J]. Nature,1990,345(6274):421-423. doi: 10.1038/345421a0

    [32]

    GERMAN C R,ELDERFIELD H. Application of the Ce anomaly as a paleoredox indicator:the ground rules[J]. Paleoceanography,1990,5(5):823-833. doi: 10.1029/PA005i005p00823

    [33]

    CHEN D F,HUANG Y Y,YUAN X L,et al. Seep carbonates and preserved methane oxidizing archaea and sulfate reducing bacteria fossils suggest recent gas venting on the seafloor in the Northeastern South China Sea[J]. Marine and Petroleum Geology,2005,22(5):613-621. doi: 10.1016/j.marpetgeo.2005.05.002

    [34]

    FENG D,CHEN D F,PECKMANN J,et al. Authigenic carbonates from methane seeps of the northern Congo fan:microbial Formation mechanism[J]. Marine and Petroleum Geology,2010,27(4):748-756. doi: 10.1016/j.marpetgeo.2009.08.006

    [35]

    WANG S H,MAGALHÃES V H,PINHEIRO L M,et al. Tracing the composition,fluid source and Formation conditions of the methane-derived authigenic carbonates in the Gulf of Cadiz with rare earth elements and stable isotopes[J]. Marine and Petroleum Geology,2015,68:192-205. doi: 10.1016/j.marpetgeo.2015.08.022

    [36]

    BIRGEL D,FENG D,ROBERTS H H,et al. Changing redox conditions at cold seeps as revealed by authigenic carbonates from Alaminos Canyon,northern Gulf of Mexico[J]. Chemical Geology,2011,285(1/4):82-96.

    [37]

    ARGENTINO C,LUGLI F,CIPRIANI A,et al. A deep fluid source of radiogenic Sr and highly dynamic seepage conditions recorded in Miocene seep carbonates of the northern Apennines (Italy)[J]. Chemical Geology,2019,522:135-147. doi: 10.1016/j.chemgeo.2019.05.029

    [38]

    EMERSON S R,HUESTED S S. Ocean anoxia and the concentrations of molybdenum and vanadium in seawater[J]. Marine Chemistry,1991,34(3/4):177-196.

    [39]

    BARLING J,ANBAR A D. Molybdenum isotope fractionation during adsorption by manganese oxides[J]. Earth and Planetary Science Letters,2004,217(3/4):315-329.

    [40]

    SCOTT C,LYONS T W. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks:refining the paleoproxies[J]. Chemical Geology,2012,324/325:19-27. doi: 10.1016/j.chemgeo.2012.05.012

    [41]

    ALGEO T J,TRIBOVILLARD N. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation[J]. Chemical Geology,2009,268(3/4):211-225.

    [42]

    ANDERSON R F,LEHURAY A P,FLEISHER M Q,et al. Uranium deposition in saanich inlet sediments,Vancouver island[J]. Geochimica et Cosmochimica Acta,1989,53(9):2205-2213. doi: 10.1016/0016-7037(89)90344-X

    [43]

    TRIBOVILLARD N,ALGEO T J,BAUDIN F,et al. Analysis of marine environmental conditions based on molybdenum-uranium covariation-Applications to Mesozoic paleoceanography[J]. Chemical Geology,2012,299(324/325):46-58.

    [44]

    汤冬杰,史晓颖,赵相宽,等. Mo-U共变作为古沉积环境氧化还原条件分析的重要指标——进展、问题与展望[J]. 现代地质,2015,29(1):1-13. doi: 10.3969/j.issn.1000-8527.2015.01.001

    [45]

    LYONS T W,SEVERMANN S. A critical look at iron paleoredox proxies:new insights from modern euxinic marine basins[J]. Geochimica et Cosmochimica Acta,2006,70(23):5698-5722. doi: 10.1016/j.gca.2006.08.021

    [46]

    SCHOLZ F,SEVERMANN S,MCMANUS J,et al. Beyond the black sea paradigm:the sedimentary fingerprint of an open-marine iron shuttle[J]. Geochimica et Cosmochimica Acta,2014,127:368-380. doi: 10.1016/j.gca.2013.11.041

    [47]

    COEY J M D. Iron in a post-glacial lake sediment core; a Mössbauer effect study[J]. Geochimica et Cosmochimica Acta,1975,39(4):401-415. doi: 10.1016/0016-7037(75)90097-6

    [48]

    郑国东. 基于穆斯堡尔谱技术的铁化学种及其在相关表生地球科学研究中的应用[J]. 矿物岩石地球化学通报,2008,27(2):161-168. doi: 10.3969/j.issn.1007-2802.2008.02.009

    [49]

    JING X,ZHANG F F,WU Y. Iron speciation in sediment cores near the Jiulong methane reef and its implication[J]. Estuarine,Coastal and Shelf Science,2019,224:253-259. doi: 10.1016/j.ecss.2019.04.015

    [50]

    SUN Z L,WEI H L,ZHANG X H,et al. A unique Fe-rich carbonate chimney associated with cold seeps in the northern Okinawa Trough,East China Sea[J]. Deep Sea Research Part I:Oceanographic Research Papers,2015,95:37-53. doi: 10.1016/j.dsr.2014.10.005

    [51]

    SCHOLZ F,SIEBERT C,DALE A W,et al. Intense molybdenum accumulation in sediments underneath a nitrogenous water column and implications for the reconstruction of paleo-redox conditions based on molybdenum isotopes[J]. Geochimica et Cosmochimica Acta,2017,213:400-417. doi: 10.1016/j.gca.2017.06.048

    [52]

    ARNOLD G L,LYONS T W,GORDON G W,et al. Extreme change in sulfide concentrations in the Black Sea during the Little Ice Age reconstructed using molybdenum isotopes[J]. Geology,2012,40(7):595-598. doi: 10.1130/G32932.1

    [53]

    ROMANIELLO S J,HERRMANN A D,ANBAR A D. Syndepositional diagenetic control of molybdenum isotope variations in carbonate sediments from the Bahamas[J]. Chemical Geology,2016,438:84-90. doi: 10.1016/j.chemgeo.2016.05.019

    [54]

    SIEBERT C,MCMANUS J,BICE A,et al. Molybdenum isotope signatures in continental margin marine sediments[J]. Earth and Planetary Science Letters,2006,241(3/4):723-733.

    [55]

    POULSON R L,SIEBERT C,MCMANUS J,et al. Authigenic molybdenum isotope signatures in marine sediments[J]. Geology,2006,34(8):617-620. doi: 10.1130/G22485.1

    [56]

    LIN Z Y,SUN X M,STRAUSS H,et al. Molybdenum isotope composition of seep carbonates:constraints on sediment biogeochemistry in seepage environments[J]. Geochimica et Cosmochimica Acta,2021,307:56-71. doi: 10.1016/j.gca.2021.05.038

    [57]

    KNITTEL K,BOETIUS A. Anaerobic oxidation of methane:progress with an unknown process[J]. Annual Review of Microbiology,2009,63(1):311-334. doi: 10.1146/annurev.micro.61.080706.093130

    [58]

    DEUSNER C,HOLLER T,ARNOLD G L,et al. Sulfur and oxygen isotope fractionation during sulfate reduction coupled to anaerobic oxidation of methane is dependent on methane concentration[J]. Earth and Planetary Science Letters,2014,399:61-73. doi: 10.1016/j.jpgl.2014.04.047

    [59]

    BOROWSKI W S,RODRIGUEZ N M,PAULL C K,et al. Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record?[J]. Marine and Petroleum Geology,2013,43:381-395. doi: 10.1016/j.marpetgeo.2012.12.009

    [60]

    LIN Q,WANG J S,TALADAY K,et al. Coupled pyrite concentration and sulfur isotopic insight into the paleo sulfate-methane transition zone (SMTZ) in the northern South China Sea[J]. Journal of Asian Earth Sciences,2016,115:547-556. doi: 10.1016/j.jseaes.2015.11.001

    [61]

    GONG S G,FENG D,PENG Y B,et al. Deciphering the sulfur and oxygen isotope patterns of sulfate-driven anaerobic oxidation of methane[J]. Chemical Geology,2021,581:120394. doi: 10.1016/j.chemgeo.2021.120394

    [62]

    TURCHYN A V,ANTLER G,BYRNE D,et al. Microbial sulfur metabolism evidenced from pore fluid isotope geochemistry at Site U1385[J]. Global and Planetary Change,2016,141:82-90. doi: 10.1016/j.gloplacha.2016.03.004

    [63]

    FENG D,ROBERTS H H. Geochemical characteristics of the barite deposits at cold seeps from the northern Gulf of Mexico continental slope[J]. Earth and Planetary Science Letters,2011,309(1/2):89-99.

    [64]

    FENG D,PENG Y B,BAO H M,et al. A carbonate-based proxy for sulfate-driven anaerobic oxidation of methane[J]. Geology,2016,44(12):999-1002. doi: 10.1130/G38233.1

    [65]

    GONG S G,PENG Y B,BAO H M,et al. Triple sulfur isotope relationships during sulfate-driven anaerobic oxidation of methane[J]. Earth and Planetary Science Letters,2018,504:13-20. doi: 10.1016/j.jpgl.2018.09.036

    [66]

    LIU J R,PELLERIN A,WANG J S,et al. Multiple sulfur isotopes discriminate organoclastic and methane-based sulfate reduction by sub-seafloor pyrite Formation[J]. Geochimica et Cosmochimica Acta,2022,316:309-330. doi: 10.1016/j.gca.2021.09.026

    [67]

    ANTLER G,TURCHYN A V,RENNIE V,et al. Coupled sulfur and oxygen isotope insight into bacterial sulfate reduction in the natural environment[J]. Geochimica et Cosmochimica Acta,2013,118:98-117. doi: 10.1016/j.gca.2013.05.005

    [68]

    ANTLER G,TURCHYN A V,HERUT B,et al. A unique isotopic fingerprint of sulfate-driven anaerobic oxidation of methane[J]. Geology,2015,43(7):619-622. doi: 10.1130/G36688.1

    [69]

    LIN Z Y,SUN X M,STRAUSS H,et al. Multiple sulfur isotope constraints on sulfate-driven anaerobic oxidation of methane:evidence from authigenic pyrite in seepage areas of the South China Sea[J]. Geochimica et Cosmochimica Acta,2017,211:153-173. doi: 10.1016/j.gca.2017.05.015

    [70]

    冯东,宫尚桂. 海底冷泉系统硫的生物地球化学过程及其沉积记录研究进展[J]. 矿物岩石地球化学通报,2019,38(6):1047-1056. doi: 10.19658/j.issn.1007-2802.2019.38.105

    [71]

    闫斌,朱祥坤,唐索寒,等. 广西新元古代BIF的铁同位素特征及其地质意义[J]. 地质学报,2010,84(7):1080-1086. doi: 10.19762/j.cnki.dizhixuebao.2010.07.011

    [72]

    JOHNSON C M,BEARD B L,KLEIN C,et al. Iron isotopes constrain biologic and abiologic processes in banded iron Formation genesis[J]. Geochimica et Cosmochimica Acta,2008,72(1):151-169. doi: 10.1016/j.gca.2007.10.013

    [73]

    BALCI N,BULLEN T D,WITTE-LIEN K,et al. Iron isotope fractionation during microbially stimulated Fe(II) oxidation and Fe(III) precipitation[J]. Geochimica et Cosmochimica Acta,2006,70(3):622-639. doi: 10.1016/j.gca.2005.09.025

    [74]

    李津. 低温条件下过渡族元素同位素分馏及其在古海洋研究中的应用[D]. 北京: 中国地质科学院, 2008.

    [75]

    张美,吴能友,陆红锋. 南海神狐海域富Fe碳酸盐岩烟囱矿物学和地球化学的研究[J]. 矿物学报,2015,35(S1):806. doi: 10.16461/j.cnki.1000-4734.2015.s1.589

    [76]

    SUN Z L,ZHOU H Y,GLASBY G P,et al. Formations of Fe-Mn-Si oxide and nontronite deposits in hydrothermal fields on the Valu Fa Ridge,Lau Basin[J]. Journal of Asian Earth Sciences,2012,43(1):64-76. doi: 10.1016/j.jseaes.2011.08.011

    [77]

    SUN Z L,ZHOU H Y,GLASBY G P,et al. Mineralogical characterization and formation of Fe-Si oxyhydroxide deposits from modern seafloor hydrothermal vents[J]. American Mineralogist,2013,98(1):85-97. doi: 10.2138/am.2013.4147

    [78]

    SUN Z L,LI J,HUANG W,et al. Generation of hydrothermal Fe-Si oxyhydroxide deposit on the Southwest Indian Ridge and its implication for the origin of ancient banded iron formations[J]. Journal of Geophysical Research,2015,120(1):187-203.

    [79]

    ZWICKER J,SMRZKA D,HIMMLER T,et al. Rare earth elements as tracers for microbial activity and early diagenesis:A new perspective from carbonate cements of ancient methane-seep deposits[J]. Chemical Geology,2018,501:77-85. doi: 10.1016/j.chemgeo.2018.10.010

    [80]

    蒋少涌,陈唯,赵葵东,等. 基于LA-(MC)-ICP-MS的矿物原位微区同位素分析技术及其应用[J]. 质谱学报,2021,42(5):623-640.

    [81]

    LIN Z Y,SUN X M,PECKMANN J,et al. How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite:a SIMS study from the South China Sea[J]. Chemical Geology,2016,440:26-41. doi: 10.1016/j.chemgeo.2016.07.007

    [82]

    SIEBERT C,NÄGLER T F,VON BLANCKENBURG F,et al. Molybdenum isotope records as a potential new proxy for paleoceanography[J]. Earth and Planetary Science Letters,2003,211(1/2):159-171.

    [83]

    DEHLER C M,ELRICK M,BLOCH J D,et al. High-resolution δ13C stratigraphy of the Chuar Group (ca. 770-742 Ma),Grand Canyon:implications for mid-Neoproterozoic climate change[J]. GSA Bulletin,2005,117(1/2):32-45.

    [84]

    赵彦彦,郑永飞. 碳酸盐沉积物的成岩作用[J]. 岩石学报,2011,27(2):501-519.

    [85]

    MCARTHUR J M,WALSH J N. Rare-earth geochemistry of phosphorites[J]. Chemical Geology,1984,47(3/4):91-220.

    [86]

    JOHANNESSON K H,HAWKINS D L,CORTÉS A. Do Archean chemical sediments record ancient seawater rare earth element patterns?[J]. Geochimica et Cosmochimica Acta,2006,70(4):871-890. doi: 10.1016/j.gca.2005.10.013

    [87]

    SHIELDS G,STILLE P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies:An isotopic and REE study of Cambrian phosphorites[J]. Chemical Geology,2001,175(1/2):29-48.

    [88]

    POURRET O,DAVRANCHE M,GRUAU G,et al. New insights into cerium anomalies in organic-rich alkaline waters[J]. Chemical Geology,2008,251(1):120-127.

    [89]

    HIMMLER T,BACH W,BOHRMANN G,et al. Rare earth elements in authigenic methane-seep carbonates as tracers for fluid composition during early diagenesis[J]. Chemical Geology,2010,277(1/2):126-136.

    [90]

    SMRZKA D,FENG D,HIMMLER T,et al. Trace elements in methane-seep carbonates:Potentials,limitations,and perspectives[J]. Earth-Science Reviews,2020,208:103263. doi: 10.1016/j.earscirev.2020.103263

    [91]

    HU Y,CHEN L Y,FENG D,et al. Geochemical record of methane seepage in authigenic carbonates and surrounding host sediments:a case study from the South China Sea[J]. Journal of Asian Earth Sciences,2017,138:51-61. doi: 10.1016/j.jseaes.2017.02.004

    [92]

    PIERRE C. Origin of the authigenic gypsum and pyrite from active methane seeps of the southwest African Margin[J]. Chemical Geology,2017,449:158-164. doi: 10.1016/j.chemgeo.2016.11.005

    [93]

    程猛,李超,周炼,等. 钼海洋地球化学与古海洋化学重建[J]. 中国科学:地球科学,2015,45(11):1649-1660.

    [94]

    REITZ A,WILLE M,NÄGLER T F,et al. Atypical Mo isotope signatures in eastern Mediterranean sediments[J]. Chemical Geology,2007,245(1/2):1-8.

    [95]

    DONG A G,SUN Z L,KENDALL B,et al. Insights from modern diffuse-flow hydrothermal systems into the origin of post-GOE deep-water Fe-Si precipitates[J]. Geochimica et Cosmo-chimica Acta,2022,317:1-17. doi: 10.1016/j.gca.2021.10.001

    [96]

    朱祥坤,王跃,闫斌,等. 非传统稳定同位素地球化学的创建与发展[J]. 矿物岩石地球化学通报,2013,32(6):651-688.

  • 加载中

(7)

(2)

计量
  • 文章访问数:  874
  • PDF下载数:  35
  • 施引文献:  0
出版历程
收稿日期:  2022-05-30
刊出日期:  2023-10-28

目录