Automatic land subsidence monitoring system based on weak-reflection fiber gratings
-
摘要:
光纤监测技术具有分布式、精度高等特点,在地面沉降监测中具有独特优势。但受限于监测成本较高与监测环境复杂,目前地面沉降光纤监测多通过人工采集数据,限制了在特殊环境变化情况下地面沉降的实时信息获取。文章在地面沉降钻孔全断面光纤监测技术的基础上,设计并建立了基于弱光栅技术的地面沉降自动化监测系统。该监测系统利用弱反射光栅、时分复用、物联网和数据库等技术,通过4G无线通信手段实现了地面沉降在线自动化监测和远程数据实时采集,并通过客户端系统软件实现数据的存储、查询和分析。将其应用到衡水地区地面沉降监测中,结果表明:钻孔内土层压缩变形主要发生在以黏性土为主的隔水层(Ad2、Ad3、Ad4);受季节性地下水开采的影响,钻孔100~400 m深度范围内砂土含水层存在波动变化,在监测期内,冬季略回弹,随后春季地下水开采量增大,地下水位下降,土层呈现压缩趋势。监测结果验证了该系统的可行性与准确性,使得整个地面沉降监测流程趋于自动化、规范化和低成本化,具有广泛的应用前景。
Abstract:Fiber optic sensing technique has the features of distributed and high-precision measurement, especially in land subsidence monitoring. Due to the high cost and complicated environment, the monitoring data is mostly collected manually and it limits the real-time acquisition of land subsidence performance under special circumstances. Based on full-section monitoring of land subsidence in boreholes using the distributed fiber optic sensing (DFOS) technique, the automatic land subsidence monitoring system based on weak-reflection fiber gratings is proposed and established in Hengshui, China. The system utilizes the techniques of weak-reflection fiber gratings, time division multiplexing, Internet of Things, database, and 4G network, then realizes automatic monitoring of land subsidence and real-time remote data collection. Through the client system software to realize the data storage, query, and analysis. The monitoring results show that the compressive deformation of the soil occurs at aquitards (Ad2, Ad3, Ad4). For the aquifers which composed of sand soil (100~400 m depth), there is a fluctuating change which influenced by seasonal extraction of the groundwater. Consequently, a slight rebound occurs in winter and then compresses in spring. The feasibility and accuracy of the system have been verified in the field investigation, and the system makes the process of monitoring more automatic, standard, and cost-effective.
-
Key words:
- land subsidence /
- DFOS /
- weak-reflection fiber gratings /
- automatic monitoring
-
-
图 2 可控围压传感光缆-土体耦合性试验装置示意图[24]
Figure 2.
表 1 弱光栅感测光缆参数
Table 1. Weak-reflection FBG sensing cable parameters
光纤类型 纤芯数量 光栅中心
波长/mm反射率/
%应变测试
量程/με光缆直径/
mm定点间距/
mG.652 1 1527~1568 0.01 15000 7.2 ≥0.5 表 2 柜式密集准分布式光纤解调仪技术指标
Table 2. Technical specifications of cabinet compact quasi-distributed optical fiber demodulator
参数类型 参数值 参数类型 参数值 测量范围 波长:40 nm 最大测量长度 20 km 应变:4% 单通道传感点容量 1500 分辨精度 波长:1 pm 通道数 4 应变:1 με 动态范围 20 dB 测量精度 波长:3 pm 采集速率 0.1~0.5 Hz 应变:3 με 工作温度 −5~45 ℃ 空间分辨精度 1 m 定位精度 0.5 m 设备尺寸 590 mm×325 mm×
80 mm设备重量 12 kg 接口类型 USB,RJ45 功耗 75 W 表 3 钻孔含水层组划分
Table 3. Division of borehole aquifer groups
地层 深度/m 含水层组划分 土层性质 组 层 Qh 0~65 I 隔水层(0~55) 粉质黏土 含水层(55~65) 粉细砂 Qp1 65~170 II 隔水层(65~120,140~170) 粉质黏土 含水层(120~140) 粉砂 Qp2 170~364 III 隔水层(170~242) 粉质黏土夹粉砂 含水层(242~364) 细砂夹粉质黏土 Qp3 364~535 IV 隔水层(364~458,502~535) 黏土夹细砂 含水层(458~502) 细-中-粗砂夹黏土 -
[1] 薛禹群, 张云, 叶淑君, 等. 中国地面沉降及其需要解决的几个问题[J]. 第四纪研究,2003,23(6):585 − 593. [XUE Yuqun, ZHANG Yun, YE Shujun, et al. Land subsidence in China and its problems[J]. Quaternary Sciences,2003,23(6):585 − 593. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-7410.2003.06.001
[2] 殷跃平, 张作辰, 张开军. 我国地面沉降现状及防治对策研究[J]. 中国地质灾害与防治学报,2005,16(2):1 − 8. [YIN Yueping, ZHANG Zuochen, ZHANG Kaijun. Land subsidence and countermeasures for its prevention in China[J]. The Chinese Journal of Geological Hazard and Control,2005,16(2):1 − 8. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-8035.2005.02.001
[3] 王哲成, 张云. 地下水超采引起的地裂缝灾害的研究进展[J]. 水文地质工程地质,2012,39(2):88 − 93. [WANG Zhecheng, ZHANG Yun. Advances of research on the earth fissure induced by groundwater over-exploitation[J]. Hydrogeology & Engineering Geology,2012,39(2):88 − 93. (in Chinese with English abstract)
[4] 胡建平, 隋兆显, 陈杰. 苏锡常地区地下水禁采后的地质环境效应研究[J]. 江苏地质,2006,30(4):261 − 264. [HU Jianping, SUI Zhaoxian, CHEN Jie. Study on geological environmental effect after banning groundwater pumping in Su-Xi-Chang area[J]. Jiangsu Geology,2006,30(4):261 − 264. (in Chinese with English abstract)
[5] 王光亚, 于军, 吴曙亮, 等. 常州地区地面沉降及地层压缩性研究[J]. 地质与勘探,2009,45(5):612 − 620. [WANG Guangya, YU Jun, WU Shuliang, et al. Land subsidence and compression of soil layers in Changzhou area[J]. Geology and Exploration,2009,45(5):612 − 620. (in Chinese with English abstract)
[6] 王巍, 徐佳, 徐鸣. 基于分层标资料的天津滨海地区含水层沉降特征分析[J]. 地下水,2014,36(4):26 − 27. [WANG Wei, XU Jia, XU Ming. Analysis of aquifer subsidence characteristics in Tianjin coastal area based on layerwise mark data[J]. Groundwater,2014,36(4):26 − 27. (in Chinese) doi: 10.3969/j.issn.1004-1184.2014.04.009
[7] AMELUNG F, GALLOWAY D L, BELL J W, et al. Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation[J]. Geology,1999,27(6):483. doi: 10.1130/0091-7613(1999)027<0483:STUADO>2.3.CO;2
[8] SATO H P, ABE K, OOTAKI O. GPS-measured land subsidence in Ojiya City, Niigata Prefecture, Japan[J]. Engineering Geology,2003,67(3/4):379 − 390.
[9] 施斌, 张丹, 王宝军. 地质与岩土工程分布式光纤监测技术及其发展[J]. 工程地质学报,2007,15(增刊2):109 − 116. [SHI Bin, ZHANG Dan, WANG Baojun. Distributed optical fiber monitoring technologies of geological and geotechnical engineering and its development[J]. Journal of Engineering Geology,2007,15(Sup2):109 − 116. (in Chinese with English abstract)
[10] 卢毅, 施斌, 魏广庆. 基于BOTDR与FBG的地裂缝定点分布式光纤传感监测技术研究[J]. 中国地质灾害与防治学报,2016,27(2):103 − 109. [LU Yi, SHI Bin, WEI Guangqing. BOTDR and FBG fixed-point distributed optical fiber sensor monitoring technology for ground fissures[J]. The Chinese Journal of Geological Hazard and Control,2016,27(2):103 − 109. (in Chinese with English abstract)
[11] 施斌, 徐洪钟, 张丹, 等. BOTDR应变监测技术应用在大型基础工程健康诊断中的可行性研究[J]. 岩石力学与工程学报,2004,23(3):493 − 499. [SHI Bin, XU Hongzhong, ZHANG Dan, et al. Feasibility study on application of BOTDR to health monitoring for large infrastructure engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(3):493 − 499. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2004.03.025
[12] 孙义杰, 张丹, 童恒金, 等. 分布式光纤监测技术在三峡库区马家沟滑坡中的应用[J]. 中国地质灾害与防治学报, 2013, 24(4): 97 − 102.
SUN Yijie, ZHANG Dan, TONG Hengjin, et al. Research of distributed fiber optic sensing technology in monitoring of Majiagou landslide of Three Gorges[J]. The Chinese Journal of Geological Hazard and Control, 2013, 24(4): 97 − 102. (in Chinese with English abstrac)
[13] 吴静红, 刘浩, 杨鹏, 等. 基于OFDR技术的混凝土裂缝识别与监测试验研究[J]. 激光与光电子学进展,2019,56(24):241201. [WU Jinghong, LIU Hao, YANG Peng, et al. Experimental research on concrete crack monitoring based on OFDR technology[J]. Laser & Optoelectronics Progress,2019,56(24):241201. (in Chinese with English abstract)
[14] 朴春德, 施斌, 朱友群, 等. 钻孔灌注桩压缩变形BOTDR分布式检测[J]. 水文地质工程地质,2008,35(4):80 − 83. [PIAO Chunde, SHI Bin, ZHU Youqun, et al. Distributed monitoring of bored pile compression deformation based on BOTDR[J]. Hydrogeology & Engineering Geology,2008,35(4):80 − 83. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2008.04.019
[15] 徐洪钟, 周元, 张丹. 基于GIS的岩溶塌陷分布式光纤监测系统的研发[J]. 水文地质工程地质,2011,38(3):120 − 123. [XU Hongzhong, ZHOU Yuan, ZHANG Dan. Development of karst collapse monitoring system using distributed optical fiber sensor based on GIS[J]. Hydrogeology & Engineering Geology,2011,38(3):120 − 123. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2011.03.022
[16] WU J H, JIANG H T, SU J W, et al. Application of distributed fiber optic sensing technique in land subsidence monitoring[J]. Journal of Civil Structural Health Monitoring,2015,5(5):587 − 597. doi: 10.1007/s13349-015-0133-8
[17] 施斌, 顾凯, 魏广庆, 等. 地面沉降钻孔全断面分布式光纤监测技术[J]. 工程地质学报,2018,26(2):356 − 364. [SHI Bin, GU Kai, WEI Guangqing, et al. Full section monitoring of land subsidence borehole using distributed fiber optic sensing techniques[J]. Journal of Engineering Geology,2018,26(2):356 − 364. (in Chinese with English abstract)
[18] 刘苏平, 施斌, 张诚成, 等. 连云港徐圩地面沉降BOTDR监测与评价[J]. 水文地质工程地质,2018,45(5):158 − 164. [LIU Suping, SHI Bin, ZHANG Chengcheng, et al. Monitoring and evaluation of land subsidence based on BOTDR in Xuwei near Lianyungang[J]. Hydrogeology & Engineering Geology,2018,45(5):158 − 164. (in Chinese with English abstract)
[19] WAN X, TAYLOR H F. Multiplexing of FBG sensors using modelocked wavelength-swept fibre laser[J]. Electronics Letters,2003,39(21):1512. doi: 10.1049/el:20030975
[20] VALENTE L C G, BRAGA A M B, RIBEIRO A S, et al. Combined time and wavelength multiplexing technique of optical fiber grating sensor arrays using commercial OTDR equipment[J]. IEEE Sensors Journal,2003,3(1):31 − 35. doi: 10.1109/JSEN.2003.810106
[21] 魏广庆, 施斌, 胡盛, 等. FBG在隧道施工监测中的应用及关键问题探讨[J]. 岩土工程学报,2009,31(4):571 − 576. [WEI Guangqing, SHI Bin, HU Sheng, et al. Several key problems in tunnel construction monitoring with FBG[J]. Chinese Journal of Geotechnical Engineering,2009,31(4):571 − 576. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2009.04.013
[22] 姜德生, 范典, 梅加纯. 基于FBG传感器的分复用技术[J]. 激光与光电子学进展,2005,42(4):14 − 19. [JIANG Desheng, FAN Dian, MEI Jiachun. Multiplexing/demultiplexing technology based on fiber bragg grating sensors[J]. Laser & Optoelectronics Progress,2005,42(4):14 − 19. (in Chinese with English abstract)
[23] 张满亮, 孙琪真, 王梓, 等. 基于全同弱反射光栅光纤的分布式传感研究[J]. 激光与光电子学进展, 2011, 48(8): 93−98.
ZHANG Manliang, SUN Qizhen, WANG Zi, et al. Investigation on distributed optical fiber sensor based on identical-low-reflective fiber gratings[J]. Laser & Optoelectronics Progress, 2011, 48(8): 93−98. (in Chinese with English abstract)
[24] 张松, 施斌, 张诚成, 等. 低围压下锚固点应变传感光缆与土体变形耦合性试验研究[J]. 工程地质学报, 2019, 27(6): 1456−1463.
ZHANG Song, SHI Bin, ZHANG Chengcheng, et al. Experimental study on mechanical coupling between anchored strain sensing optical cable and soil deformation under low confining pressures[J]. Journal of Engineering Geology, 2019, 27(6): 1456−1463. (in Chinese with English abstract)
[25] 张诚成, 施斌, 刘苏平, 等. 钻孔回填料与直埋式应变传感光缆耦合性研究[J]. 岩土工程学报, 2018, 40(11): 1959−1967.
ZHANG Chengcheng, SHI Bin, LIU Suping, et al. Mechanical coupling between borehole backfill and fiber-optic strain-sensing cable[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 1959−1967. (in Chinese with English abstract)
[26] 王鸣宇. 衡水地区地面沉降机理及地面沉降预测[D]. 北京: 中国地质大学(北京), 2016.
WANG Mingyu. Research on land subsidence mechanism and prediction of settlement in Hengshui area[D]. Beijing: China University of Geosciences (Beijing), 2016. (in Chinese with English abstract)
[27] 马云青. 河北省衡水市地面沉降特征及成因分析[J]. 中国科技成果,2017,18(22):45 − 46. [MA Yunqing. Analysis on characteristics and causes of ground subsidence in Hengshui area[J]. China Science and Technology Achievements,2017,18(22):45 − 46. (in Chinese) doi: 10.3772/j.issn.1009-5659.2017.22.018
[28] 张素娥, 寇秋焕, 李志军. 河北省衡水市地质灾害分布特征及其成因分析[J]. 地质灾害与环境保护,2006,17(4):8 − 12. [ZHANG Su’e, KOU Qiuhuan, LI Zhijun. Distribution features and its origin of the geological disaster in Hengshui City, Hebei Province[J]. Journal of Geological Hazards and Environment Preservation,2006,17(4):8 − 12. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-4362.2006.04.002
-