基于弱光栅技术的地面沉降自动化监测系统

何健辉, 张进才, 陈勇, 闫星光, 施斌, 魏广庆, 贾立翔, 刘苏平. 基于弱光栅技术的地面沉降自动化监测系统[J]. 水文地质工程地质, 2021, 48(1): 146-153. doi: 10.16030/j.cnki.issn.1000-3665.201912053
引用本文: 何健辉, 张进才, 陈勇, 闫星光, 施斌, 魏广庆, 贾立翔, 刘苏平. 基于弱光栅技术的地面沉降自动化监测系统[J]. 水文地质工程地质, 2021, 48(1): 146-153. doi: 10.16030/j.cnki.issn.1000-3665.201912053
HE Jianhui, ZHANG Jincai, CHEN Yong, YAN Xingguang, SHI Bin, WEI Guangqing, JIA Lixiang, LIU Suping. Automatic land subsidence monitoring system based on weak-reflection fiber gratings[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 146-153. doi: 10.16030/j.cnki.issn.1000-3665.201912053
Citation: HE Jianhui, ZHANG Jincai, CHEN Yong, YAN Xingguang, SHI Bin, WEI Guangqing, JIA Lixiang, LIU Suping. Automatic land subsidence monitoring system based on weak-reflection fiber gratings[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 146-153. doi: 10.16030/j.cnki.issn.1000-3665.201912053

基于弱光栅技术的地面沉降自动化监测系统

  • 基金项目: 国家自然科学基金青年项目(41907232);江苏省研究生科研与实践创新计划项目(KYCX19_0048)
详细信息
    作者简介: 何健辉(1995-),男,硕士研究生,主要研究领域为地面沉降光纤监测。E-mail: hejianhui@smail.nju.edu.cn
    通讯作者: 张进才(1975-),男,正高级工程师,硕士学位,主要研究领域为地质灾害。E-mail: zjcsjz@126.com
  • 中图分类号: P642.26

Automatic land subsidence monitoring system based on weak-reflection fiber gratings

More Information
  • 光纤监测技术具有分布式、精度高等特点,在地面沉降监测中具有独特优势。但受限于监测成本较高与监测环境复杂,目前地面沉降光纤监测多通过人工采集数据,限制了在特殊环境变化情况下地面沉降的实时信息获取。文章在地面沉降钻孔全断面光纤监测技术的基础上,设计并建立了基于弱光栅技术的地面沉降自动化监测系统。该监测系统利用弱反射光栅、时分复用、物联网和数据库等技术,通过4G无线通信手段实现了地面沉降在线自动化监测和远程数据实时采集,并通过客户端系统软件实现数据的存储、查询和分析。将其应用到衡水地区地面沉降监测中,结果表明:钻孔内土层压缩变形主要发生在以黏性土为主的隔水层(Ad2、Ad3、Ad4);受季节性地下水开采的影响,钻孔100~400 m深度范围内砂土含水层存在波动变化,在监测期内,冬季略回弹,随后春季地下水开采量增大,地下水位下降,土层呈现压缩趋势。监测结果验证了该系统的可行性与准确性,使得整个地面沉降监测流程趋于自动化、规范化和低成本化,具有广泛的应用前景。

  • 加载中
  • 图 1  FBG测量原理

    Figure 1. 

    图 2  可控围压传感光缆-土体耦合性试验装置示意图[24]

    Figure 2. 

    图 3  监测系统组成

    Figure 3. 

    图 4  试验装置

    Figure 4. 

    图 5  波长与应变关系曲线

    Figure 5. 

    图 6  衡水市地面沉降观测孔地理位置

    Figure 6. 

    图 7  钻孔剖面图及监测结果

    Figure 7. 

    图 8  不同埋深地层应变随时间变化

    Figure 8. 

    表 1  弱光栅感测光缆参数

    Table 1.  Weak-reflection FBG sensing cable parameters

    光纤类型 纤芯数量 光栅中心
    波长/mm
    反射率/
    %
    应变测试
    量程/με
    光缆直径/
    mm
    定点间距/
    m
    G.652 1 1527~1568 0.01 15000 7.2 ≥0.5
    下载: 导出CSV

    表 2  柜式密集准分布式光纤解调仪技术指标

    Table 2.  Technical specifications of cabinet compact quasi-distributed optical fiber demodulator

    参数类型 参数值 参数类型 参数值
    测量范围 波长:40 nm 最大测量长度 20 km
    应变:4% 单通道传感点容量 1500
    分辨精度 波长:1 pm 通道数 4
    应变:1 με 动态范围 20 dB
    测量精度 波长:3 pm 采集速率 0.1~0.5 Hz
    应变:3 με 工作温度 −5~45 ℃
    空间分辨精度 1 m 定位精度 0.5 m
    设备尺寸 590 mm×325 mm×
    80 mm
    设备重量 12 kg
    接口类型 USB,RJ45 功耗 75 W
    下载: 导出CSV

    表 3  钻孔含水层组划分

    Table 3.  Division of borehole aquifer groups

    地层 深度/m 含水层组划分 土层性质
    Qh 0~65 I 隔水层(0~55) 粉质黏土
    含水层(55~65) 粉细砂
    Qp1 65~170 II 隔水层(65~120,140~170) 粉质黏土
    含水层(120~140) 粉砂
    Qp2 170~364 III 隔水层(170~242) 粉质黏土夹粉砂
    含水层(242~364) 细砂夹粉质黏土
    Qp3 364~535 IV 隔水层(364~458,502~535) 黏土夹细砂
    含水层(458~502) 细-中-粗砂夹黏土
    下载: 导出CSV
  • [1]

    薛禹群, 张云, 叶淑君, 等. 中国地面沉降及其需要解决的几个问题[J]. 第四纪研究,2003,23(6):585 − 593. [XUE Yuqun, ZHANG Yun, YE Shujun, et al. Land subsidence in China and its problems[J]. Quaternary Sciences,2003,23(6):585 − 593. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-7410.2003.06.001

    [2]

    殷跃平, 张作辰, 张开军. 我国地面沉降现状及防治对策研究[J]. 中国地质灾害与防治学报,2005,16(2):1 − 8. [YIN Yueping, ZHANG Zuochen, ZHANG Kaijun. Land subsidence and countermeasures for its prevention in China[J]. The Chinese Journal of Geological Hazard and Control,2005,16(2):1 − 8. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-8035.2005.02.001

    [3]

    王哲成, 张云. 地下水超采引起的地裂缝灾害的研究进展[J]. 水文地质工程地质,2012,39(2):88 − 93. [WANG Zhecheng, ZHANG Yun. Advances of research on the earth fissure induced by groundwater over-exploitation[J]. Hydrogeology & Engineering Geology,2012,39(2):88 − 93. (in Chinese with English abstract)

    [4]

    胡建平, 隋兆显, 陈杰. 苏锡常地区地下水禁采后的地质环境效应研究[J]. 江苏地质,2006,30(4):261 − 264. [HU Jianping, SUI Zhaoxian, CHEN Jie. Study on geological environmental effect after banning groundwater pumping in Su-Xi-Chang area[J]. Jiangsu Geology,2006,30(4):261 − 264. (in Chinese with English abstract)

    [5]

    王光亚, 于军, 吴曙亮, 等. 常州地区地面沉降及地层压缩性研究[J]. 地质与勘探,2009,45(5):612 − 620. [WANG Guangya, YU Jun, WU Shuliang, et al. Land subsidence and compression of soil layers in Changzhou area[J]. Geology and Exploration,2009,45(5):612 − 620. (in Chinese with English abstract)

    [6]

    王巍, 徐佳, 徐鸣. 基于分层标资料的天津滨海地区含水层沉降特征分析[J]. 地下水,2014,36(4):26 − 27. [WANG Wei, XU Jia, XU Ming. Analysis of aquifer subsidence characteristics in Tianjin coastal area based on layerwise mark data[J]. Groundwater,2014,36(4):26 − 27. (in Chinese) doi: 10.3969/j.issn.1004-1184.2014.04.009

    [7]

    AMELUNG F, GALLOWAY D L, BELL J W, et al. Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation[J]. Geology,1999,27(6):483. doi: 10.1130/0091-7613(1999)027<0483:STUADO>2.3.CO;2

    [8]

    SATO H P, ABE K, OOTAKI O. GPS-measured land subsidence in Ojiya City, Niigata Prefecture, Japan[J]. Engineering Geology,2003,67(3/4):379 − 390.

    [9]

    施斌, 张丹, 王宝军. 地质与岩土工程分布式光纤监测技术及其发展[J]. 工程地质学报,2007,15(增刊2):109 − 116. [SHI Bin, ZHANG Dan, WANG Baojun. Distributed optical fiber monitoring technologies of geological and geotechnical engineering and its development[J]. Journal of Engineering Geology,2007,15(Sup2):109 − 116. (in Chinese with English abstract)

    [10]

    卢毅, 施斌, 魏广庆. 基于BOTDR与FBG的地裂缝定点分布式光纤传感监测技术研究[J]. 中国地质灾害与防治学报,2016,27(2):103 − 109. [LU Yi, SHI Bin, WEI Guangqing. BOTDR and FBG fixed-point distributed optical fiber sensor monitoring technology for ground fissures[J]. The Chinese Journal of Geological Hazard and Control,2016,27(2):103 − 109. (in Chinese with English abstract)

    [11]

    施斌, 徐洪钟, 张丹, 等. BOTDR应变监测技术应用在大型基础工程健康诊断中的可行性研究[J]. 岩石力学与工程学报,2004,23(3):493 − 499. [SHI Bin, XU Hongzhong, ZHANG Dan, et al. Feasibility study on application of BOTDR to health monitoring for large infrastructure engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(3):493 − 499. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2004.03.025

    [12]

    孙义杰, 张丹, 童恒金, 等. 分布式光纤监测技术在三峡库区马家沟滑坡中的应用[J]. 中国地质灾害与防治学报, 2013, 24(4): 97 − 102.

    SUN Yijie, ZHANG Dan, TONG Hengjin, et al. Research of distributed fiber optic sensing technology in monitoring of Majiagou landslide of Three Gorges[J]. The Chinese Journal of Geological Hazard and Control, 2013, 24(4): 97 − 102. (in Chinese with English abstrac)

    [13]

    吴静红, 刘浩, 杨鹏, 等. 基于OFDR技术的混凝土裂缝识别与监测试验研究[J]. 激光与光电子学进展,2019,56(24):241201. [WU Jinghong, LIU Hao, YANG Peng, et al. Experimental research on concrete crack monitoring based on OFDR technology[J]. Laser & Optoelectronics Progress,2019,56(24):241201. (in Chinese with English abstract)

    [14]

    朴春德, 施斌, 朱友群, 等. 钻孔灌注桩压缩变形BOTDR分布式检测[J]. 水文地质工程地质,2008,35(4):80 − 83. [PIAO Chunde, SHI Bin, ZHU Youqun, et al. Distributed monitoring of bored pile compression deformation based on BOTDR[J]. Hydrogeology & Engineering Geology,2008,35(4):80 − 83. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2008.04.019

    [15]

    徐洪钟, 周元, 张丹. 基于GIS的岩溶塌陷分布式光纤监测系统的研发[J]. 水文地质工程地质,2011,38(3):120 − 123. [XU Hongzhong, ZHOU Yuan, ZHANG Dan. Development of karst collapse monitoring system using distributed optical fiber sensor based on GIS[J]. Hydrogeology & Engineering Geology,2011,38(3):120 − 123. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2011.03.022

    [16]

    WU J H, JIANG H T, SU J W, et al. Application of distributed fiber optic sensing technique in land subsidence monitoring[J]. Journal of Civil Structural Health Monitoring,2015,5(5):587 − 597. doi: 10.1007/s13349-015-0133-8

    [17]

    施斌, 顾凯, 魏广庆, 等. 地面沉降钻孔全断面分布式光纤监测技术[J]. 工程地质学报,2018,26(2):356 − 364. [SHI Bin, GU Kai, WEI Guangqing, et al. Full section monitoring of land subsidence borehole using distributed fiber optic sensing techniques[J]. Journal of Engineering Geology,2018,26(2):356 − 364. (in Chinese with English abstract)

    [18]

    刘苏平, 施斌, 张诚成, 等. 连云港徐圩地面沉降BOTDR监测与评价[J]. 水文地质工程地质,2018,45(5):158 − 164. [LIU Suping, SHI Bin, ZHANG Chengcheng, et al. Monitoring and evaluation of land subsidence based on BOTDR in Xuwei near Lianyungang[J]. Hydrogeology & Engineering Geology,2018,45(5):158 − 164. (in Chinese with English abstract)

    [19]

    WAN X, TAYLOR H F. Multiplexing of FBG sensors using modelocked wavelength-swept fibre laser[J]. Electronics Letters,2003,39(21):1512. doi: 10.1049/el:20030975

    [20]

    VALENTE L C G, BRAGA A M B, RIBEIRO A S, et al. Combined time and wavelength multiplexing technique of optical fiber grating sensor arrays using commercial OTDR equipment[J]. IEEE Sensors Journal,2003,3(1):31 − 35. doi: 10.1109/JSEN.2003.810106

    [21]

    魏广庆, 施斌, 胡盛, 等. FBG在隧道施工监测中的应用及关键问题探讨[J]. 岩土工程学报,2009,31(4):571 − 576. [WEI Guangqing, SHI Bin, HU Sheng, et al. Several key problems in tunnel construction monitoring with FBG[J]. Chinese Journal of Geotechnical Engineering,2009,31(4):571 − 576. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2009.04.013

    [22]

    姜德生, 范典, 梅加纯. 基于FBG传感器的分复用技术[J]. 激光与光电子学进展,2005,42(4):14 − 19. [JIANG Desheng, FAN Dian, MEI Jiachun. Multiplexing/demultiplexing technology based on fiber bragg grating sensors[J]. Laser & Optoelectronics Progress,2005,42(4):14 − 19. (in Chinese with English abstract)

    [23]

    张满亮, 孙琪真, 王梓, 等. 基于全同弱反射光栅光纤的分布式传感研究[J]. 激光与光电子学进展, 2011, 48(8): 93−98.

    ZHANG Manliang, SUN Qizhen, WANG Zi, et al. Investigation on distributed optical fiber sensor based on identical-low-reflective fiber gratings[J]. Laser & Optoelectronics Progress, 2011, 48(8): 93−98. (in Chinese with English abstract)

    [24]

    张松, 施斌, 张诚成, 等. 低围压下锚固点应变传感光缆与土体变形耦合性试验研究[J]. 工程地质学报, 2019, 27(6): 1456−1463.

    ZHANG Song, SHI Bin, ZHANG Chengcheng, et al. Experimental study on mechanical coupling between anchored strain sensing optical cable and soil deformation under low confining pressures[J]. Journal of Engineering Geology, 2019, 27(6): 1456−1463. (in Chinese with English abstract)

    [25]

    张诚成, 施斌, 刘苏平, 等. 钻孔回填料与直埋式应变传感光缆耦合性研究[J]. 岩土工程学报, 2018, 40(11): 1959−1967.

    ZHANG Chengcheng, SHI Bin, LIU Suping, et al. Mechanical coupling between borehole backfill and fiber-optic strain-sensing cable[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 1959−1967. (in Chinese with English abstract)

    [26]

    王鸣宇. 衡水地区地面沉降机理及地面沉降预测[D]. 北京: 中国地质大学(北京), 2016.

    WANG Mingyu. Research on land subsidence mechanism and prediction of settlement in Hengshui area[D]. Beijing: China University of Geosciences (Beijing), 2016. (in Chinese with English abstract)

    [27]

    马云青. 河北省衡水市地面沉降特征及成因分析[J]. 中国科技成果,2017,18(22):45 − 46. [MA Yunqing. Analysis on characteristics and causes of ground subsidence in Hengshui area[J]. China Science and Technology Achievements,2017,18(22):45 − 46. (in Chinese) doi: 10.3772/j.issn.1009-5659.2017.22.018

    [28]

    张素娥, 寇秋焕, 李志军. 河北省衡水市地质灾害分布特征及其成因分析[J]. 地质灾害与环境保护,2006,17(4):8 − 12. [ZHANG Su’e, KOU Qiuhuan, LI Zhijun. Distribution features and its origin of the geological disaster in Hengshui City, Hebei Province[J]. Journal of Geological Hazards and Environment Preservation,2006,17(4):8 − 12. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-4362.2006.04.002

  • 加载中

(8)

(3)

计量
  • 文章访问数:  2038
  • PDF下载数:  34
  • 施引文献:  0
出版历程
收稿日期:  2019-12-23
修回日期:  2020-05-28
刊出日期:  2021-01-15

目录