高含水量冻粉黏土应力-应变曲线特性的试验研究

张遂, 匡航, 靳占英, 徐国方. 2020. 高含水量冻粉黏土应力-应变曲线特性的试验研究. 水文地质工程地质, 47(5): 116-124. doi: 10.16030/j.cnki.issn.1000-3665.202002012
引用本文: 张遂, 匡航, 靳占英, 徐国方. 2020. 高含水量冻粉黏土应力-应变曲线特性的试验研究. 水文地质工程地质, 47(5): 116-124. doi: 10.16030/j.cnki.issn.1000-3665.202002012
ZHANG Sui, KUANG Hang, JIN Zhanying, XU Guofang. 2020. An experimental study of the stress-strain characteristics of frozen silty clay with high moisture content. Hydrogeology & Engineering Geology, 47(5): 116-124. doi: 10.16030/j.cnki.issn.1000-3665.202002012
Citation: ZHANG Sui, KUANG Hang, JIN Zhanying, XU Guofang. 2020. An experimental study of the stress-strain characteristics of frozen silty clay with high moisture content. Hydrogeology & Engineering Geology, 47(5): 116-124. doi: 10.16030/j.cnki.issn.1000-3665.202002012

高含水量冻粉黏土应力-应变曲线特性的试验研究

  • 基金项目:

    国家自然科学基金项目资助(11702304;41430634);中国科学院率先行动“百人计划”项目资助(2018-040);国家重点实验室开放基金项目资助(SKLFSE201714)

详细信息
    作者简介: 张遂(1994-),男,硕士研究生,主要从事土体力学性质室内外测试等研究。
    通讯作者: 徐国方(1985-),男,博士,副研究员,主要从事特殊土的力学特性及本构模型等研究。E-mail:gfxu@whrsm.ac.cn
  • 中图分类号: TU411.7

An experimental study of the stress-strain characteristics of frozen silty clay with high moisture content

More Information
  • 为研究青藏高原粉质黏土在高含水量条件下的应力-应变特性,本文对粉质黏土试样开展了较高含水量(15%,30%,50%)、不同温度(-2℃,-4℃)及围压(0.5,1.0,2.0,4.0 MPa)条件下的三轴剪切试验,分析了冻粉黏土试样应力-应变曲线的形态和强度规律,并给出了机理性解释。试验结果表明:冻粉黏土试样的应力-应变曲线均为应变软化型。高含水量下(50%),试样的初始切线模量随围压增大呈幂函数形式增大。随着含水量的增大,试样的破坏过程渐呈脆性。试样强度方面,含水量的增大使冻粉黏土强度呈先减小后增大的规律,即存在一个强度最不利含水量。此最不利含水量主要是由于土骨架与冰相的组合使系统处于“最弱结构”以及各组分在承受荷载时的主次地位变换而引起的。围压增大使冻粉黏土强度线性降低,但降低幅度不大。结合Mohr-Coulomb准则的分析表明,黏聚力是冻粉黏土强度的主要指标,其值在最不利含水量时取得最小值,围压对冻粉黏土强度的削弱作用也在此时得以突显。
  • 加载中
  • [1]

    徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京:科学出版社, 2001.[XU X Z. WANG J C, ZHANG L X. Frozen soil physics[M]. Beijing:Science Press, 2001.(in Chinese)]

    [2]

    赵林, 吴通华, 谢昌卫, 等. 多年冻土调查和监测为青藏高原地球科学研究、环境保护和工程建设提供科学支撑[J]. 中国科学院院刊, 2017, 32(10):1159-1168.[ZHAO L, WU T H, XIE C W, et al. Support geoscience research, environmental management, and engineering construction with investigation and monitoring on permafrost in the Qinghai-Tibet plateau, China[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(10):1159-1168.(in Chinese)]

    [3]

    程国栋, 金会军. 青藏高原多年冻土区地下水及其变化[J]. 水文地质工程地质, 2013, 40(1):1-11.[CHENG G D, JIN H J. Groundwater in the permafrost regions on the Qinghai-Tibet Plateau and it changes[J]. Hydrogeology & Engineering Geology, 2013, 40(1):1-11.(in Chinese)]

    [4]

    金会军, 王绍令, 俞祁浩, 等. 青藏工程走廊冻土环境工程地质区划及评价[J]. 水文地质工程地质, 2006, 33(6):66-71.[JIN H J, WANG S L, YU Q H, et al. Regionalization and assessment of environmental geological conditions of frozen soils along the Qinghai-Tibet Engineering Corridor[J]. Hydrogeology & Engineering Geology, 2006, 33(6):66-71.(in Chinese)]

    [5]

    李永春, 鱼海麟, 解宏伟. 青藏铁路多年冻土地段的地质环境和工程地质问题[J]. 水文地质工程地质, 2002, 29(1):45-48.[LI Y C, YU H L, XIE H W. Geological environment and engineering geology of permafrost section of Qinghai-Tibet Railway[J]. Hydrogeology and Engineering Geology, 2002, 29(1):45-48.(in Chinese)]

    [6]

    北京:科学出版社, 1985.[Чьлтович, Н.А. Frozen soil Mechanics[M]. ZHANG C Q, ZHU Y L, translate. Beijing:Science Press, 1985.

    [7]

    SHUSHERINA E P, BOBKOV Y P. Effect of Moisture Content on Frozen Ground Strength[M]. Technical Translation National Research Council Canada, 1978.

    [8]

    吴紫汪, 马巍. 冻土强度与蠕变[M]. 兰州:兰州大学出版社, 1994.[WU Z W, MA W. Strength and creep of frozen soil[M]. Lanzhou:Lanzhou University Press, 1994.(in Chinese)]

    [9]

    马小杰, 张建明, 常小晓, 等. 高温-高含冰量冻结黏土强度试验研究[J]. 岩土力学, 2008, 29(9):2498-2502.[MA X J, ZHANG J M, CHANG X X, et al. Experimental research on strength of warm and ice-rich frozen clays[J]. Rock and Soil Mechanics, 2008, 29(9):2498-2502.(in Chinese)]

    [10]

    马巍, 吴紫汪, 盛煜. 围压对冻土强度特性的影响[J]. 岩土工程学报, 1995, 17(5):7-11.[MA W, WU Z W, SHENG Y. Effect of confining pressure on strength behaviour of frozen soil[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(5):7-11.(in Chinese)]

    [11]

    李顺群, 高凌霞, 柴寿喜. 冻土力学性质影响因素的显著性和交互作用研究[J]. 岩土力学, 2012, 33(4):1173-1177.[LI S Q, GAO L X, CHAI S X. Significance and interaction of factors on mechanical properties of frozen soil[J]. Rock and Soil Mechanics, 2012, 33(4):1173-1177.(in Chinese)]

    [12]

    齐吉琳, 党博翔, 徐国方, 等. 冻土强度研究的现状分析[J]. 北京建筑大学学报, 2016, 32(3):89-95.[QI J L, DANG B X, XU G F, et al. A state of the art for strength of frozen soils[J]. Journal of Beijing University of Civil Engineering and Architecture, 2016, 32(3):89-95.(in Chinese)]

    [13]

    张雅琴, 杨平, 江汪洋, 等. 粉质黏土冻土三轴强度及本构模型研究[J]. 土木工程学报, 2019, 52(增刊1):8-15.[ZHANG Y Q, YANG P, JIANG W Y, et al. Study on triaxial strength and constitutive model of frozen silty clay[J]. China Civil Engineering Journal, 2019, 52(Sup 1):8-15.(in Chinese)]

    [14]

    赖远明, 张耀, 张淑娟, 等. 超饱和含水率和温度对冻结砂土强度的影响[J]. 岩土力学, 2009, 30(12):3665-3670.[LAI Y M, ZHANG Y, ZHANG S J, et al. Experimental study of strength of frozen sandy soil under different water contents and temperatures[J]. Rock and Soil Mechanics, 2009, 30(12):3665-3670.(in Chinese)]

    [15]

    ENOKIDO M, KAMETA J. Influence of water content on compressive strength of frozen sands[J]. Soils and Foundations, 1987, 27(4):148-152.

    [16]

    ZHANG M Y, ZHANG X Y, LU J G, et al. Analysis of volumetric unfrozen water contents in freezing soils[J]. Experimental Heat Transfer, 2019, 32(5):426-438.

    [17]

    张立新, 徐学祖, 张招祥, 等. 冻土未冻水含量与压力关系的实验研究[J]. 冰川冻土, 1998, 20(2):28-31.[ZHANG L X, XU X Z, ZHANG Z X, et al. Experimental study of the relationship between the unfrozen water content of frozen soil and pressure[J]. Journal of Glaciolgy and Geocryology, 1998, 20(2):28-31.(in Chinese)]

    [18]

    DIEKMANN N, JESSBERGER H L. Creep behavior and strength of an artificially frozen silt under triaxial stress state[C]//Proceedings of 3rd International Conference on Ground Freezing, Hanover, 1982:42.

    [19]

    LADE P V, JESSBERGER H L, DIEKMANN N. Stress-strain and volumetric behavior of frozen soils.[C]//Second International Symposium on Ground Freezing, Trontheim, Norway, 1980:48-64.

    [20]

    牛亚强, 赖远明, 王旭, 等. 初始含水率对冻结粉质黏土变形和强度的影响规律研究[J]. 岩土力学, 2016, 37(2):499-506.[NIU Y Q, LAI Y M, WANG X, et al. Research on influences of initial water content on deformation and strength behaviors of frozen silty clay[J]. Rock and Soil Mechanics, 2016, 37(2):499-506.(in Chinese)]

    [21]

    赵淑萍, 马巍, 郑剑锋, 等. 冻土破坏的宏观表现和细观机理[C]//中国土木工程学会.中国土木工程学会第十届土力学及岩土工程学术会议论文集, 2007:329-335.[ZHAOS P, MA W, ZHENG J F, et al. Macroscopic manifestation and meso-mechanism of frozen soil failure[C]//China Civil Engineering Society. Proceedings of the 10th Chinese Academy of Civil Engineering and Geotechnical Conference, 2007:329-335.(in Chinese)]

    [22]

    ZHU Y L, CARBEE D L. Uniaxial compressive strength of frozen silt under constant deformation rates[J]. Cold Regions Science and Technology, 1984, 9(1):3-15.

    [23]

    徐国方. 冻土的力学性质及其亚塑性本构模型研究[D]. 北京:中国科学院大学, 2012.[XU G F. Mechanical properties and hypoplastic constitutive study of frozen soil[D]. Beijing:University of Chinese Academy of Sciences, 2012.(in Chinese)]

  • 加载中
计量
  • 文章访问数:  850
  • PDF下载数:  65
  • 施引文献:  0
出版历程
收稿日期:  2020-02-15
修回日期:  2020-04-20

目录