An experimental study of the stress-strain characteristics of frozen silty clay with high moisture content
-
摘要: 为研究青藏高原粉质黏土在高含水量条件下的应力-应变特性,本文对粉质黏土试样开展了较高含水量(15%,30%,50%)、不同温度(-2℃,-4℃)及围压(0.5,1.0,2.0,4.0 MPa)条件下的三轴剪切试验,分析了冻粉黏土试样应力-应变曲线的形态和强度规律,并给出了机理性解释。试验结果表明:冻粉黏土试样的应力-应变曲线均为应变软化型。高含水量下(50%),试样的初始切线模量随围压增大呈幂函数形式增大。随着含水量的增大,试样的破坏过程渐呈脆性。试样强度方面,含水量的增大使冻粉黏土强度呈先减小后增大的规律,即存在一个强度最不利含水量。此最不利含水量主要是由于土骨架与冰相的组合使系统处于“最弱结构”以及各组分在承受荷载时的主次地位变换而引起的。围压增大使冻粉黏土强度线性降低,但降低幅度不大。结合Mohr-Coulomb准则的分析表明,黏聚力是冻粉黏土强度的主要指标,其值在最不利含水量时取得最小值,围压对冻粉黏土强度的削弱作用也在此时得以突显。Abstract: To study the stress-strain characteristics of the Qinghai –Tibet silty clay with high moisture content, triaxial shear tests were conducted on the silty clay under relatively high moisture contents (15%, 30% and 50%), different temperatures (-2 ℃ and -4 ℃) and confining pressures (0.5, 1.0, 2.0 and 4.0 MPa). The shape of the stress–strain curves and the strength characteristics of the frozen silty clay were analyzed and interpreted in mechanism. The test results show that the stress-strain curves of the frozen silty clay specimens are all of the strain-softening type. At high moisture content (50%), the initial tangential modulus of the specimen increases with the confining pressure in the form of power function. With the increasing moisture content, the failure process of the specimens tends to be brittle. The continuous increase in moisture content causes the strength of the frozen silty clay to decrease first and increase subsequently, that is to say, there exists an unfavorable moisture content for the shear strength. The existence of the unfavorable moisture content is mainly due to the “weakest mass structure” composed of soil skeleton and ice and to the transition of the leading role of each composition in bearing the external load. With the increasing confining pressure, the shear strength of the frozen silty clay decreases linearly, but the variation range is not large. The analysis based on the Mohr-Coulomb criterion shows that the cohesion is the main constituent of the strength of the frozen silty clay. The cohesion reaches a minimum at the most unfavorable moisture content, at which the weakening effect of the confining pressure on the strength is also strengthened.
-
Key words:
- silty clay /
- triaxial test /
- shear strength /
- high moisture content
-
-
[1] 徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京:科学出版社, 2001.[XU X Z. WANG J C, ZHANG L X. Frozen soil physics[M]. Beijing:Science Press, 2001.(in Chinese)]
[2] 赵林, 吴通华, 谢昌卫, 等. 多年冻土调查和监测为青藏高原地球科学研究、环境保护和工程建设提供科学支撑[J]. 中国科学院院刊, 2017, 32(10):1159-1168.[ZHAO L, WU T H, XIE C W, et al. Support geoscience research, environmental management, and engineering construction with investigation and monitoring on permafrost in the Qinghai-Tibet plateau, China[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(10):1159-1168.(in Chinese)]
[3] 程国栋, 金会军. 青藏高原多年冻土区地下水及其变化[J]. 水文地质工程地质, 2013, 40(1):1-11.[CHENG G D, JIN H J. Groundwater in the permafrost regions on the Qinghai-Tibet Plateau and it changes[J]. Hydrogeology & Engineering Geology, 2013, 40(1):1-11.(in Chinese)]
[4] 金会军, 王绍令, 俞祁浩, 等. 青藏工程走廊冻土环境工程地质区划及评价[J]. 水文地质工程地质, 2006, 33(6):66-71.[JIN H J, WANG S L, YU Q H, et al. Regionalization and assessment of environmental geological conditions of frozen soils along the Qinghai-Tibet Engineering Corridor[J]. Hydrogeology & Engineering Geology, 2006, 33(6):66-71.(in Chinese)]
[5] 李永春, 鱼海麟, 解宏伟. 青藏铁路多年冻土地段的地质环境和工程地质问题[J]. 水文地质工程地质, 2002, 29(1):45-48.[LI Y C, YU H L, XIE H W. Geological environment and engineering geology of permafrost section of Qinghai-Tibet Railway[J]. Hydrogeology and Engineering Geology, 2002, 29(1):45-48.(in Chinese)]
[6] 北京:科学出版社, 1985.[Чьлтович, Н.А. Frozen soil Mechanics[M]. ZHANG C Q, ZHU Y L, translate. Beijing:Science Press, 1985.
[7] SHUSHERINA E P, BOBKOV Y P. Effect of Moisture Content on Frozen Ground Strength[M]. Technical Translation National Research Council Canada, 1978.
[8] 吴紫汪, 马巍. 冻土强度与蠕变[M]. 兰州:兰州大学出版社, 1994.[WU Z W, MA W. Strength and creep of frozen soil[M]. Lanzhou:Lanzhou University Press, 1994.(in Chinese)]
[9] 马小杰, 张建明, 常小晓, 等. 高温-高含冰量冻结黏土强度试验研究[J]. 岩土力学, 2008, 29(9):2498-2502.[MA X J, ZHANG J M, CHANG X X, et al. Experimental research on strength of warm and ice-rich frozen clays[J]. Rock and Soil Mechanics, 2008, 29(9):2498-2502.(in Chinese)]
[10] 马巍, 吴紫汪, 盛煜. 围压对冻土强度特性的影响[J]. 岩土工程学报, 1995, 17(5):7-11.[MA W, WU Z W, SHENG Y. Effect of confining pressure on strength behaviour of frozen soil[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(5):7-11.(in Chinese)]
[11] 李顺群, 高凌霞, 柴寿喜. 冻土力学性质影响因素的显著性和交互作用研究[J]. 岩土力学, 2012, 33(4):1173-1177.[LI S Q, GAO L X, CHAI S X. Significance and interaction of factors on mechanical properties of frozen soil[J]. Rock and Soil Mechanics, 2012, 33(4):1173-1177.(in Chinese)]
[12] 齐吉琳, 党博翔, 徐国方, 等. 冻土强度研究的现状分析[J]. 北京建筑大学学报, 2016, 32(3):89-95.[QI J L, DANG B X, XU G F, et al. A state of the art for strength of frozen soils[J]. Journal of Beijing University of Civil Engineering and Architecture, 2016, 32(3):89-95.(in Chinese)]
[13] 张雅琴, 杨平, 江汪洋, 等. 粉质黏土冻土三轴强度及本构模型研究[J]. 土木工程学报, 2019, 52(增刊1):8-15.[ZHANG Y Q, YANG P, JIANG W Y, et al. Study on triaxial strength and constitutive model of frozen silty clay[J]. China Civil Engineering Journal, 2019, 52(Sup 1):8-15.(in Chinese)]
[14] 赖远明, 张耀, 张淑娟, 等. 超饱和含水率和温度对冻结砂土强度的影响[J]. 岩土力学, 2009, 30(12):3665-3670.[LAI Y M, ZHANG Y, ZHANG S J, et al. Experimental study of strength of frozen sandy soil under different water contents and temperatures[J]. Rock and Soil Mechanics, 2009, 30(12):3665-3670.(in Chinese)]
[15] ENOKIDO M, KAMETA J. Influence of water content on compressive strength of frozen sands[J]. Soils and Foundations, 1987, 27(4):148-152.
[16] ZHANG M Y, ZHANG X Y, LU J G, et al. Analysis of volumetric unfrozen water contents in freezing soils[J]. Experimental Heat Transfer, 2019, 32(5):426-438.
[17] 张立新, 徐学祖, 张招祥, 等. 冻土未冻水含量与压力关系的实验研究[J]. 冰川冻土, 1998, 20(2):28-31.[ZHANG L X, XU X Z, ZHANG Z X, et al. Experimental study of the relationship between the unfrozen water content of frozen soil and pressure[J]. Journal of Glaciolgy and Geocryology, 1998, 20(2):28-31.(in Chinese)]
[18] DIEKMANN N, JESSBERGER H L. Creep behavior and strength of an artificially frozen silt under triaxial stress state[C]//Proceedings of 3rd International Conference on Ground Freezing, Hanover, 1982:42.
[19] LADE P V, JESSBERGER H L, DIEKMANN N. Stress-strain and volumetric behavior of frozen soils.[C]//Second International Symposium on Ground Freezing, Trontheim, Norway, 1980:48-64.
[20] 牛亚强, 赖远明, 王旭, 等. 初始含水率对冻结粉质黏土变形和强度的影响规律研究[J]. 岩土力学, 2016, 37(2):499-506.[NIU Y Q, LAI Y M, WANG X, et al. Research on influences of initial water content on deformation and strength behaviors of frozen silty clay[J]. Rock and Soil Mechanics, 2016, 37(2):499-506.(in Chinese)]
[21] 赵淑萍, 马巍, 郑剑锋, 等. 冻土破坏的宏观表现和细观机理[C]//中国土木工程学会.中国土木工程学会第十届土力学及岩土工程学术会议论文集, 2007:329-335.[ZHAOS P, MA W, ZHENG J F, et al. Macroscopic manifestation and meso-mechanism of frozen soil failure[C]//China Civil Engineering Society. Proceedings of the 10th Chinese Academy of Civil Engineering and Geotechnical Conference, 2007:329-335.(in Chinese)]
[22] ZHU Y L, CARBEE D L. Uniaxial compressive strength of frozen silt under constant deformation rates[J]. Cold Regions Science and Technology, 1984, 9(1):3-15.
[23] 徐国方. 冻土的力学性质及其亚塑性本构模型研究[D]. 北京:中国科学院大学, 2012.[XU G F. Mechanical properties and hypoplastic constitutive study of frozen soil[D]. Beijing:University of Chinese Academy of Sciences, 2012.(in Chinese)]
-
计量
- 文章访问数: 850
- PDF下载数: 65
- 施引文献: 0