某铁路隧道底鼓段粉砂质泥岩微宏观物理力学特性研究

刘超, 袁伟, 路军富, 张钊. 2020. 某铁路隧道底鼓段粉砂质泥岩微宏观物理力学特性研究. 水文地质工程地质, 47(5): 108-115. doi: 10.16030/j.cnki.issn.1000-3665.202001001
引用本文: 刘超, 袁伟, 路军富, 张钊. 2020. 某铁路隧道底鼓段粉砂质泥岩微宏观物理力学特性研究. 水文地质工程地质, 47(5): 108-115. doi: 10.16030/j.cnki.issn.1000-3665.202001001
LIU Chao, YUAN Wei, LU Junfu, ZHANG Zhao. 2020. A study of the micro-macro-physical and mechanical properties of silty mudstone in the bottom drum section of a railway tunnel. Hydrogeology & Engineering Geology, 47(5): 108-115. doi: 10.16030/j.cnki.issn.1000-3665.202001001
Citation: LIU Chao, YUAN Wei, LU Junfu, ZHANG Zhao. 2020. A study of the micro-macro-physical and mechanical properties of silty mudstone in the bottom drum section of a railway tunnel. Hydrogeology & Engineering Geology, 47(5): 108-115. doi: 10.16030/j.cnki.issn.1000-3665.202001001

某铁路隧道底鼓段粉砂质泥岩微宏观物理力学特性研究

  • 基金项目:

    四川省科技计划项目重点研发项目资助(2018GZ0057);四川省科技计划项目面上项目资助(2018JY0136)

详细信息
    作者简介: 刘超(1994-),男,硕士研究生,主要从事隧道设计研究工作。E-mail:1139779935@qq.com
  • 中图分类号: U458

A study of the micro-macro-physical and mechanical properties of silty mudstone in the bottom drum section of a railway tunnel

  • 西南地区YD隧道在运营期间隧道底部多段发生隆起变形,造成无砟轨道板开裂,导致轨道结构受损不稳定,影响行车安全。为了探明其底鼓原因,现对底鼓段紫红色缓倾层状粉砂质泥岩进行微宏观工程特性研究,分析其对隧道底鼓的影响。采用室内试验的方法,对该处粉砂质泥岩的物质组成成分、微观结构、膨胀性、抗剪抗压强度、压缩变形等围岩性质开展全面试验,并对围岩地应力、水文地质条件进行现场调查。试验和调查结果表明:研究区围岩根据岩石质量评价标准可以判定为Ⅳ级围岩;其岩石成分主要为伊利石、石英、绿泥石等,不含蒙脱石这种膨胀性黏土矿物,自由膨胀率最大为1.96%,不具备膨胀性;岩石的层理面上分布有2~8 μm大小的孔隙,岩石内部存在长度为3~8 μm的原生裂纹;岩石的单轴饱和抗压强度为11.3~21.8 MPa,属于较软岩;岩石的物理力学参数受含水量的影响较大,随着含水量的增加,内聚力缩减50%,抗压强度缩减了45%~55%,弹性模量缩减了50%。研究结果显示研究区岩体在水理作用下岩石强度会大幅度降低,但不含膨胀性矿物,不具备膨胀性。且根据现场监测,地下水位无变化,因此地下水和膨胀性不是隧道底鼓的直接诱因。
  • 加载中
  • [1]

    谢勇谋. 国道317线鹧鸪山隧道施工地质预报研究[D]. 成都:成都理工大学, 2004.[XIE Y M. Cnostruction geology prediction research on Zhegu-mountain tunnel of 317 national highway[D]. Chengdu:Chengdu University of Technology, 2004.(in Chinese)]

    [2]

    张洋. 隧道工程软弱围岩大变形控制体系研究[D]. 成都:西南交通大学, 2006.[ZHANG Y. Research on the controlling system of large deformation in the soft rock tunnel[D]. Chengdu:Southwest Jiaotong University, 2006.(in Chinese)]

    [3]

    张后全, 韩立军, 贺永年, 等. 构造复杂区域膨胀软岩巷道底鼓控制研究[J]. 采矿与安全工程学报, 2011, 28(1):16-21.[ZHANG H Q, HAN L J, HE Y N, et al. Floor heave control in roadways with soft-and-swelling rocks in complicated structural area[J]. Journal of Mining & Safety Engineering, 2011, 28(1):16-21.(in Chinese)]

    [4]

    曲永新, 陈历鸿, 金春山. 膨胀岩学术讨论会概况[J]. 水文地质工程地质, 1986, 13(6):12-13.[QU Y X, CHEN L H, JIN C S. Overview of swelling rock symposium[J]. Hydrogeology & Engineering Geology, 1986, 13(6):12-13.(in Chinese)]

    [5]

    姜耀东, 赵毅鑫, 刘文岗, 等. 深部开采中巷道底鼓问题的研究[J]. 岩石力学与工程学报, 2004, 23(14):2396-2401.[JIANG Y D, ZHAO Y X, LIU W G, et al. Research on floor heave of roadway in deep mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(14):2396-2401.(in Chinese)]

    [6]

    薛晓辉, 张军, 宿钟鸣, 等. 武都西隧道底鼓机理及防治措施研究[J]. 公路工程, 2015, 40(5):124-128.[XUE X H, ZHANG J, SU Z M, et al. Study on mechanism and prevention measures of floor heave in Wuduxi tunnel[J]. Highway Engineering, 2015, 40(5):124-128.(in Chinese)]

    [7]

    腾俊洋, 唐建新. 层状炭质页岩隧道底鼓机理分析[J]. 铁道科学与工程学报, 2017, 14(1):110-116.[TENG J Y, TANG J X. Mechanism analysis of floor heave in layered carbonaceous shale tunnel[J]. Journal of Railway Science and Engineering, 2017, 14(1):110-116.(in Chinese)]

    [8]

    樊纯坛. 大断面富水泥岩隧道受力特性及仰拱底鼓机理研究[D]. 兰州:兰州交通大学, 2017.[FAN C T. Research on mechanical characteristics of large-section cement-rich rock tunnel and mechanism of bottom arch drum[D]. Lanzhou:Lanzhou Jiatong University, 2017.(in Chinese)]

    [9]

    王进博. 水平页岩隧道底鼓机理及控制技术研究[D]. 重庆:重庆大学, 2017.[WANG J B. Mechanism and disposal technology of floor heave in horizontal shale tunnel[D]. Chongqing:Chongqing University, 2017.(in Chinese)]

    [10]

    HEUZE F E. High-temperature mechanical, physical and Thermal properties of granitic rocks-A review[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1983, 20(1):3-10.

    [11]

    Suggested methods for determining the strength of rock materials in triaxial compression:Revised version[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1983,20(6):285-290.

    [12]

    王立川, 肖小文, 林辉. 某铁路隧道底部结构隆起病害成因分析及治理对策探讨[J]. 隧道建设, 2014, 34(9):823-836.[WANG L C, XIAO X W, LIN H. Analysis on causes for and renovation of floor structure of a high-speed railway tunnel located in slightly-dipping interbedded rock mass[J]. Tunnel Construction, 2014, 34(9):823-836.(in Chinese)]

    [13]

    孙良倩. 甘肃天水地区新近系泥岩工程特性试验研究[J]. 隧道建设(中英文), 2017, 37(增刊2):54-59.[SUN L Q. Experimental study of engineering properties of Neogene mudstone in Tianshui, Gansu[J]. Tunnel Construction, 2017, 37(Sup 2):54-59.(in Chinese)]

    [14]

    郑清松. 龙泉山红层砂岩微结构对其工程力学性质的影响研究[D]. 成都:西南交通大学, 2016.[ZHENG Q S. Research on the influence of microstructure of red beds sandstone on its engineering mechanical properties in Longquan mountain area[D]. Chengdu:Southwest Jiaotong University, 2016.(in Chinese)]

    [15]

    中华人民共和国铁道部.铁路工程岩石试验规程:TB 10115-2014[S].北京:中国铁道出版社,2015.[Ministry of Railways of the People's Republic of China. Railway engineering rock test regulations:TB 10115-2014)[S]. Beijing:China Railway Publishing House, 2015.(in Chinese)]

    [16]

    黄宏伟, 车平. 泥岩遇水软化微观机理研究[J]. 同济大学学报(自然科学版), 2007, 35(7):866-870.[HUANG H W, CHE P. Research on micro-mechanism of softening and argillitization of mudstone[J]. Journal of Tongji University (Natural Science), 2007, 35(7):866-870.(in Chinese)]

    [17]

    孙小明, 武雄, 何满潮, 等. 强膨胀性软岩的判别与分级标准[J]. 岩石力学与工程学报, 2005, 24(1):128-132.[SUN X M, WU X, HE M C, et al. Differentiation and grade criterion of strong swelling soft rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(1):128-132.(in Chinese)]

    [18]

    刘长武, 陆士良. 泥岩遇水崩解软化机理的研究[J]. 岩土力学, 2000, 21(1):28-31.[LIU C W, LU S L. Research on mechanism of mudstone degradation and softening in water[J]. Rock and Soil Mechanics, 2000, 21(1):28-31.(in Chinese)]

    [19]

    郭永春, 谢强, 文江泉. 红层特殊岩土化学性质工程判别准则试验研究[J]. 水文地质工程地质, 2009, 36(6):85-88.[GUO Y C, XIE Q, WEN J Q. Experimental study of the engineering criterion of the chemical stability of red beds rock[J]. Hydrogeology & Engineering Geology, 2009, 36(6):85-88.(in Chinese)]

    [20]

    中华人民共和国铁道部.铁路工程特殊岩土勘察规程:TB 10038-2012[S].北京:中国铁道出版社,2012.[Ministry of Railways of the People's Republic of China. Special Geotechnical Investigation Procedures for Railway Engineering:TB 10038-2012[S]. Beijing:China Railway Publishing House, 2012.(in Chinese)]

    [21]

    谢云鹏, 陈秋南, 黄小城, 等. 深埋隧道炭质板岩微观结构及单轴压缩试验研究[J]. 水文地质工程地质, 2020, 47(1):96-102.[XIE Y P, CHEN Q N, HUANG X C, et al. An experimental study of microstructure and uniaxial compression test of carbonaceous slate in a deep buried tunnel[J]. Hydrogeology & Engineering Geology, 2020, 47(1):96-102.(in Chinese)]

    [22]

    袁广祥, 张路青, 曾庆利, 等. 花岗岩矿物组成与其单轴抗压强度的相关性研究[J]. 水文地质工程地质, 2018, 45(5):93-100.[YUAN G X, ZHANG L Q, ZENG Q L, et al. Correlation of the mineralogical characteristics with the uniaxial compressive strength of granite[J]. Hydrogeology & Engineering Geology, 2018, 45(5):93-100.(in Chinese)]

    [23]

    国家铁路局.铁路隧道设计规范:TB 10003-2005[S].北京:中国铁道出版社,2005.[National Railway Administration. Design specification for railway tunnels:TB 10003-2005[S]. Beijing:China Railway Publishing House, 2005.(in Chinese)]

    [24]

    中华人民共和国住房和城乡建设部.工程岩体分级标准:GB/T 50218-2014[S]. 北京:中国计划出版社,2014.[Ministry of Housing and Urban-Rural Development of the People's Republic of China. Engineering rock mass classification standard:GB/T 50218-2014[S].Beijing:China Planning Press, 2014.(in Chinese)]

  • 加载中
计量
  • 文章访问数:  629
  • PDF下载数:  58
  • 施引文献:  0
出版历程
收稿日期:  2020-01-01
修回日期:  2020-03-07

目录