循环动荷载下下伏空洞路面塌陷的模型试验研究

高程鹏. 循环动荷载下下伏空洞路面塌陷的模型试验研究[J]. 水文地质工程地质, 2021, 48(1): 70-77. doi: 10.16030/j.cnki.issn.1000-3665.202003002
引用本文: 高程鹏. 循环动荷载下下伏空洞路面塌陷的模型试验研究[J]. 水文地质工程地质, 2021, 48(1): 70-77. doi: 10.16030/j.cnki.issn.1000-3665.202003002
GAO Chengpeng. Model tests of road subsidence progress with underground cavities caused by cyclic dynamic load[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 70-77. doi: 10.16030/j.cnki.issn.1000-3665.202003002
Citation: GAO Chengpeng. Model tests of road subsidence progress with underground cavities caused by cyclic dynamic load[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 70-77. doi: 10.16030/j.cnki.issn.1000-3665.202003002

循环动荷载下下伏空洞路面塌陷的模型试验研究

  • 基金项目: 上海市青年科技启明星计划资助(20QB1404900);国家重点研发计划项目资助(2017YFC0805000)
详细信息
    作者简介: 高程鹏(1993-),男,硕士,工程师,研究方向包括市政工程、地质工程、水土流失、渗流侵蚀等。E-mail: gaochengpeng@smedi.com
  • 中图分类号: P642.26

Model tests of road subsidence progress with underground cavities caused by cyclic dynamic load

  • 在循环动荷载作用下,地下空洞会逐步发展成为路面塌陷。针对此问题,本文建立了模拟路面塌陷发生发展全过程的模型试验。试验结果表明,随着动荷载值的减小,土体所能承受的极限振动循环次数呈指数型增加。而当地下存在一定尺寸的地下空洞时,即使动荷载值较小,在足够多次数的振动循环作用后,也有可能引发路面塌陷。最大粒径较大、不均匀系数较高土体的静力稳定性较强,体现在其能承受的极限静荷载较大;但其动力稳定性较弱,体现在其能承受的极限振动循环次数较少。反之,最大粒径较小、不均匀系数较小土体的静力稳定性较弱,而动力稳定性较强。地下空洞上覆土层厚度越大,则其静力、动力稳定性均较强。同时,循环动荷载作用下地表沉降与土体裂缝的发展呈现出三阶段规律。阶段1为初始固结沉降阶段,持续时间较短,土体受到振动压密作用,地表发生整体沉降,土体裂缝未见明显发展;阶段2为等速沉降阶段,持续时间较长,中心土体受到振动剪切作用,地表中心沉降与土体裂缝随时间呈等速发展;阶段3为加速沉降阶段,持续时间最短,中心土体受到振动破坏作用,地表中心沉降与土体裂缝快速发展直至发生塌陷。

  • 加载中
  • 图 1  车辆荷载下路面塌陷的发展过程示意图

    Figure 1. 

    图 2  循环动荷载试验装置整体示意图

    Figure 2. 

    图 3  地下空洞模具

    Figure 3. 

    图 4  土体表面橡胶层示意图

    Figure 4. 

    图 5  激光测距仪示意图

    Figure 5. 

    图 6  循环动荷载试验现场

    Figure 6. 

    图 7  粒径级配曲线

    Figure 7. 

    图 8  动荷载值W与极限振动循环次数N的关系

    Figure 8. 

    图 9 

    图 10  土槽中点地表沉降随循环荷载次数的发展曲线

    Figure 10. 

    图 11  关键循环次数时地下空洞表面裂缝的发展情况(Case2-4)

    Figure 11. 

    表 1  循环动荷载试验工况汇总表

    Table 1.  Summary sheet of the cyclic dynamic loading tests

    试验土体 空洞上方土层厚度 t/mm 加载
    方式
    车辆荷载
    W/kg
    极限振动循环次数 Nu 试验编号
    标准
    丰浦砂
    50 静荷载 W u=6.88 Case 1-0
    动荷载 Wu×100%=6.88 31 Case 1-1
    Wu×90%=6.20 235 Case 1-2
    Wu×85%=5.84 107 Case 1-3
    Wu×80%=5.50 1385 Case 1-4
    40 静荷载 Wu=5.95 Case 2-0
    动荷载 Wu×90%=5.36 31 Case 2-1
    Wu×80%=4.76 238 Case 2-2
    Wu×70%=4.17 113 Case 2-3
    Wu×60%=3.57 1207 Case 2-4
    连续级配硅砂-1 40 静荷载 Wu=8.67 Case 3-0
    动荷载 Wu×90%=7.80 1 Case 3-1
    Wu×80%=6.94 1 Case 3-2
    Wu×50%=4.33 40 Case 3-3
    Wu×40%=3.47 860 Case 3-4
    WuU×30%=2.60 1321 Case 3-5
    连续级配硅砂-2 40 静荷载 Wu=6.75 Case 4-0
    动荷载 Wu×80%=5.40 15 Case 4-1
    Wu×65%=4.39 34 Case 4-2
    Wu×55%=3.71 330 Case 4-3
    Wu×45%=3.04 1661 Case 4-4
    下载: 导出CSV
  • [1]

    杨赛. 基于双拱效应的地下空洞上覆土质地层变形与塌陷研究[D]. 北京: 北京交通大学, 2018.

    YANG Sai. Study on deformation and collapse of soil stratum above underground cavities based on the double-arch effect[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese with English abstract)

    [2]

    彭涛, 葛少亭, 武威, 等. 岩溶土洞发育区地基塌陷的治理[J]. 水文地质工程地质,2001,28(3):55 − 57. [PENG Tao, GE Shaoting, WU Wei, et al. Remeadiations of foundation collapse in the soil cavity area of Karst[J]. Hydrogeology and Engineering Geology,2001,28(3):55 − 57. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2001.03.016

    [3]

    冯伟, 么惠全. 采空塌陷区管道成灾机理分析及工程防治措施[J]. 水文地质工程地质,2010,37(3):112 − 115. [FENG Wei, YAO Huiquan. Analysis of disaster mechanism and countermeasures for endangered pipeline security in mining subsidence areas[J]. Hydrogeology & Engineering Geology,2010,37(3):112 − 115. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2010.03.024

    [4]

    杜正民, 吴光明, 洪亮. 潜蚀作用导致岩溶塌陷地质灾害的实例分析[J]. 水文地质工程地质,2007,34(3):89 − 92. [DU Zhengmin, WU Guangming, HONG Liang. A case study of the geological hazard of Karst land collapse caused by groundwater corroding[J]. Hydrogeology & Engineering Geology,2007,34(3):89 − 92. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2007.03.023

    [5]

    程星, 黄润秋. 铁路振动及其在岩溶塌陷中的致塌力研究[J]. 岩石力学与工程学报,2003,22(12):2062 − 2066. [CHENG Xing, HUANG Runqiu. Study on train-induced vibration and its influence on Karst collapse[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(12):2062 − 2066. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2003.12.021

    [6]

    张成平, 岳跃敬, 王梦恕. 隧道施工扰动下管线渗漏水对地面塌陷的影响及控制[J]. 土木工程学报,2015,48(增刊1):351 − 356. [ZHANG Chengping, YUE Yuejing, WANG Mengshu. Infl uence of pipeline leakage on ground collapse and its control during adjacent tunnelling[J]. China Civil Engineering Journal,2015,48(Sup1):351 − 356. (in Chinese with English abstract)

    [7]

    周健, 姚志雄, 张刚. 砂土渗流过程的细观数值模拟[J]. 岩土工程学报,2007,29(7):977 − 981. [ZHOU Jian, YAO Zhixiong, ZHANG Gang. Mesomechanical simulation of seepage flow in sandy soil[J]. Chinese Journal of Geotechnical Engineering,2007,29(7):977 − 981. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2007.07.004

    [8]

    张冬梅, 高程鹏, 尹振宇, 等. 隧道渗流侵蚀的颗粒流模拟[J]. 岩土力学,2017,38(增刊1):429 − 438. [ZHANG Dongmei, GAO Chengpeng, YIN Zhenyu, et al. Particle flow simulation of seepage erosion around shield tunnel[J]. Rock and Soil Mechanics,2017,38(Sup1):429 − 438. (in Chinese with English abstract)

    [9]

    ZHANG Dongmei, GAO Chengpeng, YIN Zhenyu. CFD-DEM modeling of seepage erosion around shield tunnels[J]. Tunnelling and Underground Space Technology,2019,83:60 − 72. doi: 10.1016/j.tust.2018.09.017

    [10]

    陶连金, 袁松, 安军海. 城市道路地下空洞病害发展机理及对路面塌陷的影响[J]. 黑龙江科技大学学报,2015,25(3):289 − 293. [TAO Lianjin, YUAN Song, AN Junhai. Development mechanism of cavity damage under urban roads and its influence on road surface subsidence[J]. Journal of Heilongjiang University of Science and Technology,2015,25(3):289 − 293. (in Chinese with English abstract) doi: 10.3969/j.issn.2095-7262.2015.03.013

    [11]

    李涛, 张子真, 宗露丹. 地下空洞引起土质地层地陷的形成机制与预测研究[J]. 岩土力学,2015,36(7):1995 − 2002. [LI Tao, ZHANG Zizhen, ZONG Ludan. Study of formation mechanism and prediction of sinkholes in soil stratum induced by subterranean cavity[J]. Rock and Soil Mechanics,2015,36(7):1995 − 2002. (in Chinese with English abstract)

    [12]

    张成平, 王梦恕, 张顶立, 等. 城市隧道施工诱发地面塌陷的预测模型[J]. 中国铁道科学,2012,33(4):31 − 37. [ZHANG Chengping, WANG Mengshu, ZHANG Dingli, et al. Prediction model for ground collapse induced by urban tunnelling[J]. China Railway Science,2012,33(4):31 − 37. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-4632.2012.04.06

  • 加载中

(11)

(1)

计量
  • 文章访问数:  1099
  • PDF下载数:  40
  • 施引文献:  0
出版历程
收稿日期:  2020-03-02
修回日期:  2020-04-13
刊出日期:  2021-01-15

目录