Model tests of road subsidence progress with underground cavities caused by cyclic dynamic load
-
摘要:
在循环动荷载作用下,地下空洞会逐步发展成为路面塌陷。针对此问题,本文建立了模拟路面塌陷发生发展全过程的模型试验。试验结果表明,随着动荷载值的减小,土体所能承受的极限振动循环次数呈指数型增加。而当地下存在一定尺寸的地下空洞时,即使动荷载值较小,在足够多次数的振动循环作用后,也有可能引发路面塌陷。最大粒径较大、不均匀系数较高土体的静力稳定性较强,体现在其能承受的极限静荷载较大;但其动力稳定性较弱,体现在其能承受的极限振动循环次数较少。反之,最大粒径较小、不均匀系数较小土体的静力稳定性较弱,而动力稳定性较强。地下空洞上覆土层厚度越大,则其静力、动力稳定性均较强。同时,循环动荷载作用下地表沉降与土体裂缝的发展呈现出三阶段规律。阶段1为初始固结沉降阶段,持续时间较短,土体受到振动压密作用,地表发生整体沉降,土体裂缝未见明显发展;阶段2为等速沉降阶段,持续时间较长,中心土体受到振动剪切作用,地表中心沉降与土体裂缝随时间呈等速发展;阶段3为加速沉降阶段,持续时间最短,中心土体受到振动破坏作用,地表中心沉降与土体裂缝快速发展直至发生塌陷。
Abstract:Due to the cyclic dynamic load, the underground cavity will gradually develop into road subsidence. In view of this problem, this paper establishes model tests to simulate the whole developing process of road subsidence. The results show that as the cyclic dynamic load decreases, the limited cyclic loading times causing road subsidence increases exponentially. However, if there is a certain size of underground cavity, small cyclic dynamic load can also lead to road subsidence after sufficient cyclic loading times. The soil with larger maximum particle size and higher uneven coefficient has larger ultimate static strength and smaller ultimate dynamic strength. On the contrary, soil with smaller maximum particle size and smaller uneven coefficient has smaller ultimate static strength and larger ultimate dynamic strength. Larger thickness of the soil overlying the underground cavity will lead to larger ultimate static and dynamic strength. At the same time, the development of the road subsidence curve and the soil cracks under the cyclic dynamic load undergo three stages. Stage 1 is the initial consolidation settlement stage with short duration. In this stage, the soil is compacted by vibration and the ground surface has overall settlement with no obvious development of the observed soil cracks. Stage 2 is the uniform development stage with long duration and uniform development in settlement and soil cracks. The soil is subjected to the effect of shear vibrating. Stage 3 is the accelerated development stage with the shortest duration. The soil is subjected to vibration failure. The settlement and soil cracks develop rapidly until road subsidence occurs.
-
Key words:
- cyclic dynamic load /
- ground subsidence /
- model tests
-
表 1 循环动荷载试验工况汇总表
Table 1. Summary sheet of the cyclic dynamic loading tests
试验土体 空洞上方土层厚度 t/mm 加载
方式车辆荷载
W/kg极限振动循环次数 Nu 试验编号 标准
丰浦砂50 静荷载 W u=6.88 − Case 1-0 动荷载 Wu×100%=6.88 31 Case 1-1 Wu×90%=6.20 235 Case 1-2 Wu×85%=5.84 107 Case 1-3 Wu×80%=5.50 1385 Case 1-4 40 静荷载 Wu=5.95 − Case 2-0 动荷载 Wu×90%=5.36 31 Case 2-1 Wu×80%=4.76 238 Case 2-2 Wu×70%=4.17 113 Case 2-3 Wu×60%=3.57 1207 Case 2-4 连续级配硅砂-1 40 静荷载 Wu=8.67 − Case 3-0 动荷载 Wu×90%=7.80 1 Case 3-1 Wu×80%=6.94 1 Case 3-2 Wu×50%=4.33 40 Case 3-3 Wu×40%=3.47 860 Case 3-4 WuU×30%=2.60 1321 Case 3-5 连续级配硅砂-2 40 静荷载 Wu=6.75 − Case 4-0 动荷载 Wu×80%=5.40 15 Case 4-1 Wu×65%=4.39 34 Case 4-2 Wu×55%=3.71 330 Case 4-3 Wu×45%=3.04 1661 Case 4-4 -
[1] 杨赛. 基于双拱效应的地下空洞上覆土质地层变形与塌陷研究[D]. 北京: 北京交通大学, 2018.
YANG Sai. Study on deformation and collapse of soil stratum above underground cavities based on the double-arch effect[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese with English abstract)
[2] 彭涛, 葛少亭, 武威, 等. 岩溶土洞发育区地基塌陷的治理[J]. 水文地质工程地质,2001,28(3):55 − 57. [PENG Tao, GE Shaoting, WU Wei, et al. Remeadiations of foundation collapse in the soil cavity area of Karst[J]. Hydrogeology and Engineering Geology,2001,28(3):55 − 57. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2001.03.016
[3] 冯伟, 么惠全. 采空塌陷区管道成灾机理分析及工程防治措施[J]. 水文地质工程地质,2010,37(3):112 − 115. [FENG Wei, YAO Huiquan. Analysis of disaster mechanism and countermeasures for endangered pipeline security in mining subsidence areas[J]. Hydrogeology & Engineering Geology,2010,37(3):112 − 115. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2010.03.024
[4] 杜正民, 吴光明, 洪亮. 潜蚀作用导致岩溶塌陷地质灾害的实例分析[J]. 水文地质工程地质,2007,34(3):89 − 92. [DU Zhengmin, WU Guangming, HONG Liang. A case study of the geological hazard of Karst land collapse caused by groundwater corroding[J]. Hydrogeology & Engineering Geology,2007,34(3):89 − 92. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2007.03.023
[5] 程星, 黄润秋. 铁路振动及其在岩溶塌陷中的致塌力研究[J]. 岩石力学与工程学报,2003,22(12):2062 − 2066. [CHENG Xing, HUANG Runqiu. Study on train-induced vibration and its influence on Karst collapse[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(12):2062 − 2066. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2003.12.021
[6] 张成平, 岳跃敬, 王梦恕. 隧道施工扰动下管线渗漏水对地面塌陷的影响及控制[J]. 土木工程学报,2015,48(增刊1):351 − 356. [ZHANG Chengping, YUE Yuejing, WANG Mengshu. Infl uence of pipeline leakage on ground collapse and its control during adjacent tunnelling[J]. China Civil Engineering Journal,2015,48(Sup1):351 − 356. (in Chinese with English abstract)
[7] 周健, 姚志雄, 张刚. 砂土渗流过程的细观数值模拟[J]. 岩土工程学报,2007,29(7):977 − 981. [ZHOU Jian, YAO Zhixiong, ZHANG Gang. Mesomechanical simulation of seepage flow in sandy soil[J]. Chinese Journal of Geotechnical Engineering,2007,29(7):977 − 981. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2007.07.004
[8] 张冬梅, 高程鹏, 尹振宇, 等. 隧道渗流侵蚀的颗粒流模拟[J]. 岩土力学,2017,38(增刊1):429 − 438. [ZHANG Dongmei, GAO Chengpeng, YIN Zhenyu, et al. Particle flow simulation of seepage erosion around shield tunnel[J]. Rock and Soil Mechanics,2017,38(Sup1):429 − 438. (in Chinese with English abstract)
[9] ZHANG Dongmei, GAO Chengpeng, YIN Zhenyu. CFD-DEM modeling of seepage erosion around shield tunnels[J]. Tunnelling and Underground Space Technology,2019,83:60 − 72. doi: 10.1016/j.tust.2018.09.017
[10] 陶连金, 袁松, 安军海. 城市道路地下空洞病害发展机理及对路面塌陷的影响[J]. 黑龙江科技大学学报,2015,25(3):289 − 293. [TAO Lianjin, YUAN Song, AN Junhai. Development mechanism of cavity damage under urban roads and its influence on road surface subsidence[J]. Journal of Heilongjiang University of Science and Technology,2015,25(3):289 − 293. (in Chinese with English abstract) doi: 10.3969/j.issn.2095-7262.2015.03.013
[11] 李涛, 张子真, 宗露丹. 地下空洞引起土质地层地陷的形成机制与预测研究[J]. 岩土力学,2015,36(7):1995 − 2002. [LI Tao, ZHANG Zizhen, ZONG Ludan. Study of formation mechanism and prediction of sinkholes in soil stratum induced by subterranean cavity[J]. Rock and Soil Mechanics,2015,36(7):1995 − 2002. (in Chinese with English abstract)
[12] 张成平, 王梦恕, 张顶立, 等. 城市隧道施工诱发地面塌陷的预测模型[J]. 中国铁道科学,2012,33(4):31 − 37. [ZHANG Chengping, WANG Mengshu, ZHANG Dingli, et al. Prediction model for ground collapse induced by urban tunnelling[J]. China Railway Science,2012,33(4):31 − 37. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-4632.2012.04.06