水-岩作用下粉砂质泥岩含水损伤本构模型

李安润, 邓辉, 王红娟, 郑瀚, 苟晓峰, 潘远阳. 水-岩作用下粉砂质泥岩含水损伤本构模型[J]. 水文地质工程地质, 2021, 48(2): 106-113. doi: 10.16030/j.cnki.issn.1000-3665.202004007
引用本文: 李安润, 邓辉, 王红娟, 郑瀚, 苟晓峰, 潘远阳. 水-岩作用下粉砂质泥岩含水损伤本构模型[J]. 水文地质工程地质, 2021, 48(2): 106-113. doi: 10.16030/j.cnki.issn.1000-3665.202004007
LI Anrun, DENG Hui, WANG Hongjuan, ZHENG Han, GOU Xiaofeng, PAN Yuanyang. Constitutive model of water-damaged silty mudstone under water-rock interactions[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 106-113. doi: 10.16030/j.cnki.issn.1000-3665.202004007
Citation: LI Anrun, DENG Hui, WANG Hongjuan, ZHENG Han, GOU Xiaofeng, PAN Yuanyang. Constitutive model of water-damaged silty mudstone under water-rock interactions[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 106-113. doi: 10.16030/j.cnki.issn.1000-3665.202004007

水-岩作用下粉砂质泥岩含水损伤本构模型

  • 基金项目: 国家自然科学基金项目(41272332)
详细信息
    作者简介: 李安润(1995-),男,博士,主要从事于岩石力学与本构模型研究。E-mail: 497994633@qq.com
    通讯作者: 邓辉(1969-),男,教授,博士,主要从事于岩石力学与遥感地质灾害研究。E-mail: 330744407@qq.com
  • 中图分类号: P642.3

Constitutive model of water-damaged silty mudstone under water-rock interactions

More Information
  • 软岩遇水具有显著的劣化效应,以往研究主要集中于软岩的流变特性,对水-岩作用下软岩的含水损伤研究较少,但水-岩作用下软岩的含水损伤效应对工程建设的指导至关重要。因此,以滇中地区粉砂质泥岩为研究对象,对干燥状态、天然含水率和饱水条件下的粉砂质泥岩试样进行三轴压缩蠕变试验。试验结果表明:(1)不同含水率试样在初始加载阶段产生的应变量均远大于后期逐级加载阶段的应变增加量,且随着含水率的增加初始加载蠕变量逐渐增大;(2)随着含水率的提升,最终蠕变量逐渐增加,试样进入加速蠕变阶段的应力阈值逐渐降低,长期强度也显著降低。根据试验结果,基于损伤理论,引入一个非线性黏塑性体考虑含水情况对蠕变的影响,提出基于经典Burgers模型并具有水-岩作用劣化特征的含水损伤蠕变本构模型。通过1stopt软件辨识参数,并验证了模型的准确性和可适性。研究结果对于滇中红层软岩的含水损伤特性研究提供了一定的参考。

  • 加载中
  • 图 1  粉砂质泥岩微观结构

    Figure 1. 

    图 2  试样饱水处理

    Figure 2. 

    图 3  粉砂质泥岩蠕变全过程曲线

    Figure 3. 

    图 4  加速蠕变阶段蠕变速率曲线

    Figure 4. 

    图 5  粉砂质泥岩蠕变过程等时应力-应变曲线

    Figure 5. 

    图 6  粉砂质泥岩蠕变力学模型

    Figure 6. 

    图 7  拟合曲线与试验数据对比

    Figure 7. 

    表 1  粉砂质泥岩全岩矿物含量

    Table 1.  Full rock mineral contents of thesilty mudstone

    矿物 黏土矿物 石英 钾长石 斜长石 方解石 赤铁矿
    含量/% 36.6 16.9 4.1 18.3 19.7 4.4
    下载: 导出CSV

    表 2  饱和含水率试验结果

    Table 2.  Saturated water content test result

    含水状态 岩样编号 烘干前
    质量/g
    烘干后
    质量/g
    含水率/
    (%)
    平均含水率/
    %
    天然含水率 A1 52.2 51.2 1.92 1.67
    A2 54.2 53.4 1.48
    A3 49.9 49.1 1.60
    饱和含水率 B1 48.7 47.3 2.95 3.02
    B2 53.1 51.6 2.90
    B3 54.3 52.6 3.23
    下载: 导出CSV

    表 3  不同含水率抗剪强度参数

    Table 3.  Shear strength parameters of different water content

    含水状态 内摩擦角φ 黏聚力C/MPa
    干燥状态(0%) 43.52 4.64
    天然状态(1.67%) 39.37 4.18
    饱水状态(3.02%) 36.48 3.70
    下载: 导出CSV

    表 4  不同含水率加载方案

    Table 4.  Loading schemes with different moisture content

    含水状态 分级荷载/MPa
    干燥状态(0%) 7 14 21 28 35 42
    天然状态(1.67%) 4 8 12 16 20 24 28
    饱水状态(3.02%) 2 4 6 8 10
    下载: 导出CSV

    表 5  含水损伤蠕变模型参数

    Table 5.  Parametersused in the water damage creep model

    含水状态 加载应力/MPa /GPa /GPa /(GPa·h) /(GPa·h) /(GPa·h) R2
    干燥状态 7 1.68 0.95 82.58 138.21 0.13 0.951
    14 1.65 0.93 73.22 120.07 0.15 0.984
    21 1.60 0.89 71.85 88.15 0.15 0.932
    28 1.58 0.84 68.43 62.49 0.17 0.911
    35 1.56 0.82 52.71 49.75 0.12 0.956
    42 1.53 0.77 33.58 30.16 2.95 0.16 0.973
    天然状态 4 1.4 0.82 71.0 112.4 0.12 0.965
    8 1.36 0.83 63.5 103.6 0.11 0.976
    12 1.27 0.75 63.3 79.3 0.13 0.987
    16 1.25 0.68 56.7 50.7 0.16 0.988
    20 1.18 0.64 46.2 46.1 0.17 0.981
    24 1.10 0.60 33.5 32.3 0.17 0.963
    28 1.13 0.51 27.8 20.5 2.78 0.18 0.950
    饱水状态 2 1.21 0.72 63.44 88.2 0.14 0.955
    4 1.18 0.71 60.13 85.3 0.15 0.981
    6 1.15 0.68 45.12 62.6 0.12 0.962
    8 1.10 0.62 33.98 33.4 0.14 0.938
    10 1.08 0.59 25.79 19.1 2.63 0.16 0.986
    下载: 导出CSV
  • [1]

    周翠英, 梁宁, 刘镇. 红层软岩遇水作用的孔隙结构多重分形特征[J]. 工程地质学报,2020,28(1):1 − 9. [ZHOU Cuiying, LIANG Ning, LIU Zhen. Multifractal characteristics of pore structure of red beds soft rock at different saturations[J]. Journal of Engineering Geology,2020,28(1):1 − 9. (in Chinese with English abstract)

    [2]

    邓华锋, 张恒宾, 李建林, 等. 水-岩作用对砂岩卸荷力学特性及微观结构的影响[J]. 岩土力学,2018,39(7):2344 − 2352. [DENG Huafeng, ZHANG Henbin, LI Jianlin, et al. Effect of water-rock interaction on unloading mechanical properties and microstructure of sandstone[J]. Rock and Soil Mechanics,2018,39(7):2344 − 2352. (in Chinese with English abstract)

    [3]

    周翠英, 李伟科, 向中明, 等. 水-应力作用下软岩细观结构摩擦接触分析[J]. 岩土力学,2015,36(9):2458 − 2466. [ZHOU Cuiying, LI Weike, XIANG Zhongming, et al. Analysis of mesoscopic frictional contacts in soft rocks under water-stress interaction[J]. Rock and Soil Mechanics,2015,36(9):2458 − 2466. (in Chinese with English abstract)

    [4]

    曹文贵, 李翔. 岩石损伤软化统计本构模型及参数确定方法的新探讨[J]. 岩土力学,2008,29(11):2952 − 2956. [CAO Wengui, LI Xinag. A new discussion on damage softening statistical constitutive model for rocks and method for determining its parameters[J]. Rock and Soil Mechanics,2008,29(11):2952 − 2956. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2008.11.011

    [5]

    曹文贵, 戴笠, 张超. 深部岩石统计损伤本构模型研究[J]. 水文地质工程地质,2016,43(4):60 − 65. [CAO Wengui, DAI Li, ZHANG Chao. A study of statistical damage constitutive models for deep earth rocks[J]. Hydrogeology & Engineering Geology,2016,43(4):60 − 65. (in Chinese with English abstract)

    [6]

    吕爱钟, 丁志坤, 焦春茂, 等. 岩石非定常蠕变模型辨识[J]. 岩石力学与工程学报,2008,27(1):16 − 21. [LU Aizhong, DING Zhikun, JIAO Chunmao, et al. Identification of non-stationary creep constitutive models of rock[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(1):16 − 21. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2008.01.003

    [7]

    王来贵, 赵娜, 何峰, 等. 岩石蠕变损伤模型及其稳定性分析[J]. 煤炭学报,2009,34(1):64 − 68. [WANG Laigui, ZHAO Na, HE Feng, et al. Rock creep damage model and its stability analysis[J]. Journal of China Coal Society,2009,34(1):64 − 68. (in Chinese with English abstract) doi: 10.3321/j.issn:0253-9993.2009.01.013

    [8]

    陈卫忠, 王者超, 伍国军, 等. 盐岩非线性蠕变损伤本构模型及其工程应用[J]. 岩石力学与工程学报,2007,26(3):467 − 472. [CHEN Weizhong, WANG Zhechao, WU Guojun, et al. Nonlinear creep damage constitutive model of rock salt and its application to engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(3):467 − 472. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2007.03.004

    [9]

    范庆忠, 高延法, 崔希海, 等. 软岩非线性蠕变模型研究[J]. 岩土工程学报,2007,29(4):505 − 509. [FAN Qingzhong, GAO Yanfa, CUI Xihai, et al. Study on nonlinear creep model of soft rock[J]. Chinese Journal of Geotechnical Engineering,2007,29(4):505 − 509. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2007.04.006

    [10]

    范庆忠, 李术才, 高延法. 软岩三轴蠕变特性的试验研究[J]. 岩石力学与工程学报,2007,26(7):1381 − 1385. [FAN Qingzhong, LI Shucai, GAO Yanfa. Experimental study on creep properties of soft rock under triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(7):1381 − 1385. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2007.07.010

    [11]

    杨春和, 马洪岭, 刘建锋. 循环加、卸载下盐岩变形特性试验研究[J]. 岩土力学,2009,30(12):3562 − 3568. [YANG Chunhe, MA Hongling, LIU Jianfeng. Study of deformation of rock salt under cycling loading and unloading[J]. Rock and Soil Mechanics,2009,30(12):3562 − 3568. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2009.12.002

    [12]

    蒋昱州, 王瑞红, 朱杰兵, 等. 砂岩的蠕变与弹性后效特性试验研究[J]. 岩石力学与工程学报,2015,34(10):2010 − 2017. [JIANG Yizhou, WANG Ruihong, ZHU Jiebing, et al. Experimental study of creep and elastic aftereffect of sandstone[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(10):2010 − 2017. (in Chinese with English abstract)

    [13]

    赵建军, 解明礼, 余建乐, 等. 冻融作用下含裂隙岩石力学特性及损伤演化规律试验研究[J]. 工程地质学报,2019,27(6):1199 − 1207. [ZHAO Jianjun, XIE Mingli, YU Jianle, et al. Experimental study on mechanical properties and damage evolution of fractured rock under freezing-thawing action[J]. Journal of Engineering Geology,2019,27(6):1199 − 1207. (in Chinese with English abstract)

    [14]

    吴礼舟, 李部, 孙萍. 甘肃甘谷裂隙泥岩剪切蠕变行为及其修正模型研究[J]. 地质力学学报,2017,23(6):923 − 934. [WU Lizhou, LI Bu, SUN Ping. Study on shear creep behavior of mudstone and its correction model of Gangu fissure in Gansu[J]. Journal of Geomechanics,2017,23(6):923 − 934. (in Chinese with English abstract)

    [15]

    汪辉平, 曹文贵, 王江营, 等. 模拟岩石应变软化变形全过程的统计损伤本构模型研究[J]. 水文地质工程地质,2013,40(4):44 − 49. [WANG Huiping, CAO Wengui, WANG Jianying, et al. A study of the statistical damage constitutive model of rocks considering a full deformation process[J]. Hydrogeology & Engineering Geology,2013,40(4):44 − 49. (in Chinese with English abstract)

    [16]

    周峙, 张家铭, 刘宇航, 等. 巴东组紫红色泥质粉砂岩损伤特性三轴试验研究[J]. 水文地质工程地质,2012,39(2):56 − 60. [ZHOU Zhi, ZHANG Jiaming, LIU Yuhang, et al. A triaxial testing study of the damage characteristics of purple argillaceous siltstone of the Badong formation[J]. Hydrogeology & Engineering Geology,2012,39(2):56 − 60. (in Chinese with English abstract)

    [17]

    朱俊杰. 滇中红层软岩水-岩作用机理及时效性变形特性研究[D]. 成都: 成都理工大学, 2019.

    ZHU Junjie. Study on water-rock interaction mechanism and time-dependent deformation characteristics of red beds soft rock in central Yunnan[D]. Chengdu: Chengdu University of Technology, 2019. (in Chinese with English abstract)

  • 加载中

(7)

(5)

计量
  • 文章访问数:  1255
  • PDF下载数:  72
  • 施引文献:  0
出版历程
收稿日期:  2020-04-07
修回日期:  2020-05-08
刊出日期:  2021-03-15

目录