全风化花岗岩地层中高固相离析浆液灌浆机理研究

赵钰, 郑洪, 曹函, 林飞, 王旭斌, 贺茉莉. 全风化花岗岩地层中高固相离析浆液灌浆机理研究[J]. 水文地质工程地质, 2021, 48(2): 78-88. doi: 10.16030/j.cnki.issn.1000-3665.202006023
引用本文: 赵钰, 郑洪, 曹函, 林飞, 王旭斌, 贺茉莉. 全风化花岗岩地层中高固相离析浆液灌浆机理研究[J]. 水文地质工程地质, 2021, 48(2): 78-88. doi: 10.16030/j.cnki.issn.1000-3665.202006023
ZHAO Yu, ZHENG Hong, CAO Han, LIN Fei, WANG Xubin, HE Moli. A study of grouting mechanism of high solid phase segregation grout in fully weathered granite[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 78-88. doi: 10.16030/j.cnki.issn.1000-3665.202006023
Citation: ZHAO Yu, ZHENG Hong, CAO Han, LIN Fei, WANG Xubin, HE Moli. A study of grouting mechanism of high solid phase segregation grout in fully weathered granite[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 78-88. doi: 10.16030/j.cnki.issn.1000-3665.202006023

全风化花岗岩地层中高固相离析浆液灌浆机理研究

  • 基金项目: 国家自然科学基金项目(41302124);国土资源部复杂条件钻采技术重点实验室基金开放课题基金(EDLF2017)
详细信息
    作者简介: 赵钰(1996-),男,硕士研究生,主要从事非常规能源开发、岩石力学等研究。E-mail: zhaoyu@csu.edu.cn
    通讯作者: 曹函(1982-),女,副教授,硕士生导师,主要从事非常规能源钻采关键技术与储层保护等教学与科研工作。E-mail: hancao@csu.edu.cn
  • 中图分类号: TU 432

A study of grouting mechanism of high solid phase segregation grout in fully weathered granite

More Information
  • 全风化花岗岩地层稳定性差、遇水易发生崩解,工程上使用常规材料防渗加固注浆时效果较差。针对这一情况,依托湖南省郴州市莽山水库防渗加固灌浆项目,通过自主设计的全风化花岗岩地层注浆室内模拟试验装置,进行模拟注浆试验,实现了浆液在整个注浆过程中的扩散情况模拟,对不同注浆压力、不同位置点所取试样开展单轴抗压、抗剪强度及渗透率测试试验,对不同注浆压力下完整结石体取样观察,研究以全风化花岗岩颗粒为配方主体材料的高固相离析浆液在全风化花岗岩地层的防渗加固效果及浆液扩散模式。结果表明:该浆液在全风化花岗岩地层扩散过程中经历了渗透扩散、挤密压缩、劈裂扩展三个阶段,是一种复合注浆形式;以全风化花岗岩颗粒为主体的高固相离析浆液在全风化花岗岩地层注浆中效果显著,随着注浆压力提升,单轴抗压强度显著提升为原土体的3.25~13.67倍,抗剪强度在不同法向压力情况下提升为原土体的1.63~2.69倍,渗透系数从10−4 cm/s下降至10−5 cm/s甚至10−6 cm/s。

  • 加载中
  • 图 1  全风化花岗岩X-RD测试结果

    Figure 1. 

    图 2  全风化花岗岩土样颗粒级配曲线

    Figure 2. 

    图 3  注浆模拟试验装置示意图

    Figure 3. 

    图 4  取样点位置图

    Figure 4. 

    图 5  注浆前全风化花岗岩原样(a)和注浆后结石体试样(b)

    Figure 5. 

    图 6  单轴抗压强度与注浆压力关系

    Figure 6. 

    图 7  不同法向应力时抗剪强度与注浆压力关系

    Figure 7. 

    图 8  不同取样点试样注浆压力与渗透系数关系

    Figure 8. 

    图 9  全风化花岗岩原样和注浆后试样SEM扫描电镜图

    Figure 9. 

    图 10  不同注浆压力下结石体形态

    Figure 10. 

    表 1  取样点A,B不同注浆压力下单轴抗压强度实验结果

    Table 1.  Experimental results of uniaxial compressive strength at sampling point A and B under different grouting pressures

    试样编号 注浆压力/
    MPa
    单轴抗压强度/
    MPa
    单轴抗压强度
    平均值/MPa
    取样点A Ⅰ-1 0.0 0.15 0.12
    Ⅰ-2 0.09
    Ⅰ-3 0.12
    Ⅱ-1 0.5 0.69 0.88
    Ⅱ-2 0.93
    Ⅱ-3 1.02
    Ⅲ-1 1.0 1.58 1.31
    Ⅲ-2 1.14
    Ⅲ-3 1.32
    Ⅳ-1 1.5 1.68 1.64
    Ⅳ-2 1.75
    Ⅳ-3 1.49
    取样点B Ⅰ-1 0.0 0.15 0.12
    Ⅰ-2 0.09
    Ⅰ-3 0.12
    Ⅱ-1 0.5 0.32 0.39
    Ⅱ-2 0.42
    Ⅱ-3 0.43
    Ⅲ-1 1.0 0.88 0.91
    Ⅲ-2 0.75
    Ⅲ-3 1.10
    Ⅳ-1 1.5 1.23 1.21
    Ⅳ-2 1.11
    Ⅳ-3 1.29
    下载: 导出CSV

    表 2  取样点A,B试样抗剪强度实验结果

    Table 2.  Experimental results of shear strength of sample at sampling of point A and B

    试样编号 注浆压力/MPa 法向压力/kPa 抗剪强度/kPa
    取样点A Ⅰ-1 0.0 300 209
    Ⅰ-2 400 253
    Ⅰ-3 500 304
    Ⅱ-1 0.5 300 453
    Ⅱ-2 400 523
    Ⅱ-3 500 643
    Ⅲ-1 1.0 300 542
    Ⅲ-2 400 625
    Ⅲ-3 500 705
    Ⅳ-1 1.5 300 658
    Ⅳ-2 400 728
    Ⅳ-3 500 819
    取样点B Ⅰ-1 0.0 300 209
    Ⅰ-2 400 253
    Ⅰ-3 500 304
    Ⅱ-1 0.5 300 331
    Ⅱ-2 400 343
    Ⅱ-3 500 497
    Ⅲ-1 1.0 300 364
    Ⅲ-2 400 518
    Ⅲ-3 500 655
    Ⅳ-1 1.5 300 385
    Ⅳ-2 400 569
    Ⅳ-3 500 703
    下载: 导出CSV

    表 3  不同取样位置注浆压力与渗透系数

    Table 3.  Relationship between grouting pressure and permeability at different sampling locations

    取样位置 试样编号 注浆压力/
    MPa
    渗透系数/
    (cm·s−1
    平均渗透系数/
    (cm·s−1
    透水等级
    取样点A Ⅰ-1 0.0 2.3×10−4 4.7×10−4 中等透水
    Ⅰ-2 5.7×10−4
    Ⅰ-3 6.1×10−4
    Ⅱ-1 0.5 6.8×10−5 4.5×10−5 弱透水
    Ⅱ-2 3.5×10−5
    Ⅱ-3 3.2×10−5
    Ⅲ-1 1.0 2.0×10−5 1.6×10−5 弱透水
    Ⅲ-2 1.8×10−5
    Ⅲ-3 9.8×10−6
    Ⅳ-1 1.5 7.0×10−6 8.9×10−6 微透水
    Ⅳ-2 1.0×10−5
    Ⅳ-3 9.6×10−6
    取样点B Ⅰ-1 0.0 2.3×10−4 4.7×10−4 中等透水
    Ⅰ-2 5.7×10−4
    Ⅰ-3 6.1×10−4
    Ⅱ-1 0.5 5.4×10−5 6.7×10−5 弱透水
    Ⅱ-2 7.3×10−5
    Ⅱ-3 7.7×10−5
    Ⅲ-1 1.0 3.2×10−5 3.9×10−5 弱透水
    Ⅲ-2 4.8×10−5
    Ⅲ-3 3.7×10−5
    Ⅳ-1 1.5 9.8×10−6 1.2×10−5 弱透水
    Ⅳ-2 1.3×10−5
    Ⅳ-3 1.3×10−5
    下载: 导出CSV
  • [1]

    吴能森. 花岗岩残积土的分类研究[J]. 岩土力学,2006,27(12):2299 − 2304. [WU Nengsen. Study on classification of granite residual soils[J]. Rock and Soil Mechanics,2006,27(12):2299 − 2304. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2006.12.041

    [2]

    陈爱云. 黑云母花岗岩全风化层工程地质特性研究[J]. 铁道工程学报,2016,33(6):22 − 25. [CHEN Aiyun. Research on the engineering geology characteristics of completely weathering layer of biotite granite[J]. Journal of Railway Engineering Society,2016,33(6):22 − 25. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-2106.2016.06.005

    [3]

    陈洪江, 崔冠英. 花岗岩残积土物理力学指标的概型分布检验[J]. 华中科技大学学报(自然科学版),2001,29(5):92 − 94. [CHEN Hongjiang, CUI Guanying. Probability type testing of the distribution on the granite eluvial soil mechanical parameters[J]. Journal of Huazhong University of Science and Technology. Nature Science,2001,29(5):92 − 94. (in Chinese with English abstract)

    [4]

    苗胜军, 杨志军, 龙超, 等. 混合花岗岩加载细观力学特性及破裂演化规律[J]. 江苏大学学报(自然科学版),2012,33(4):469 − 473. [MIAO Shengjun, YANG Zhijun, LONG Chao, et al. Micro-mechanical characteristics and cracks revolution laws of migmatitic granite under different loading conditions[J]. Journal of Jiangsu University (Natural Science Edition),2012,33(4):469 − 473. (in Chinese with English abstract)

    [5]

    李建新, 陈秋南, 赵柳, 等. 南岳地区全风化花岗岩崩解特性试验研究[J]. 湖南科技大学学报(自然科学版),2015,30(4):59 − 63. [LI Jianxin, CHEN Qiunan, ZHAO Liu, et al. Experimental research on disintegration characteristics of weathered granite in Nanyue[J]. Journal of Hunan University of Science & Technology (Natural Science Editon),2015,30(4):59 − 63. (in Chinese with English abstract)

    [6]

    张素敏, 朱永全, 高炎, 等. 全风化花岗岩流变特性试验研究[J]. 地下空间与工程学报,2016,12(4):904 − 911. [ZHANG Sumin, ZHU Yongquan, GAO Yan, et al. Experimental investigation on rheological properties of completely weathered granite[J]. Chinese Journal of Underground Space and Engineering,2016,12(4):904 − 911. (in Chinese with English abstract)

    [7]

    《岩土注浆理论与工程实例》协作组. 岩土注浆理论与工程实例[M]. 北京: 科学出版社, 2001.

    The groups of the “Geotechnical grouting theory and engineering examples”. Geotechnical grouting theory and engineering examples[M]. Beijing: Science Press, 2001.(in Chinese)

    [8]

    罗平平. 裂隙岩体可灌性及灌浆数值模拟研究[D]. 南京: 河海大学, 2006.

    LUO Pingping. Numerical simulation study on the irrigability and grouting in fractured rock mass[D]. Nanjing: Hohai University, 2006.(in Chinese with English abstract)

    [9]

    李术才, 张伟杰, 张庆松, 等. 富水断裂带优势劈裂注浆机制及注浆控制方法研究[J]. 岩土力学,2014,35(3):744 − 752. [LI Shucai, ZHANG Weijie, ZHANG Qingsong, et al. Research on advantage-fracture grouting mechanism and controlled grouting method in water-rich fault zone[J]. Rock and Soil Mechanics,2014,35(3):744 − 752. (in Chinese with English abstract)

    [10]

    齐延海, 李术才, 李召峰, 等. 全风化花岗岩富水地层注浆治理研究与应用[J]. 中南大学学报(自然科学版),2019,50(3):694 − 703. [QI Yanhai, LI Shucai, LI Zhaofeng, et al. Study and application of grouting governing of completely weathered granite in water-rich stratum[J]. Journal of Central South University (Science and Technology),2019,50(3):694 − 703. (in Chinese) doi: 10.11817/j.issn.1672-7207.2019.03.024

    [11]

    王旭斌, 郑洪, 林飞, 等. 全风化花岗岩防渗关键技术研究与应用[J]. 水利规划与设计,2019(4):149 − 153. [WANG Xubin, ZHENG Hong, LIN Fei, et al. Research and application of the key technology of seepage control of fully weathered granite[J]. Water Resources Planning and Design,2019(4):149 − 153. (in Chinese)

    [12]

    王凯, 李术才, 杨磊, 等. 全风化花岗岩加固特性注浆模拟试验[J]. 天津大学学报(自然科学与工程技术版),2017,50(11):1199 − 1209. [WANG Kai, LI Shucai, YANG Lei, et al. Grouting simulation experiment on reinforcement characteristics of completely decomposed granite[J]. Journal of Tianjin University (Science and Technology),2017,50(11):1199 − 1209. (in Chinese with English abstract)

    [13]

    袁敬强, 陈卫忠, 黄世武, 等. 全风化花岗岩注浆加固特性试验研究[J]. 岩石力学与工程学报,2016,35(增刊1):2876 − 2882. [YUAN Jingqiang, CHEN Weizhong, HUANG Shiwu, et al. Experimental study on physico-mechanical properties of grouted completely weathered granite[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(Sup1):2876 − 2882. (in Chinese with English abstract)

    [14]

    涂鹏, 王星华. 海底隧道注浆材料强度劣化规律及使用寿命研究[J]. 水文地质工程地质,2011,38(1):65 − 68. [TU Peng, WANG Xinghua. Research on strength degradation law and Service Life of grouting materials in undersea tunnel[J]. Hydrogeology & Engineering Geology,2011,38(1):65 − 68. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2011.01.012

    [15]

    张健, 李术才, 李召峰, 等. 全风化花岗岩地层单-双液浆加固试验研究[J]. 中南大学学报(自然科学版),2018,49(12):3051 − 3059. [ZHANG Jian, LI Shucai, LI Zhaofeng, et al. Comparative study of reinforcement patterns between single-and double-fluid grouting in fully-weathered granite[J]. Journal of Central South University (Natural Science edition),2018,49(12):3051 − 3059. (in Chinese with English abstract) doi: 10.11817/j.issn.1672-7207.2018.12.019

    [16]

    张贵金, 刘杰, 胡大可, 等. 黏土水泥膏浆流变性能及其对灌浆的影响[J]. 长江科学院院报,2017,34(3):119 − 125. [ZHANG Gguijin, LIU Jie, HU Dake, et al. Rheological Properties of plaster slurry of clay-cement and its influence on grouting engineering[J]. Journal of Changjiang Academy of Sciences,2017,34(3):119 − 125. (in Chinese with English abstract) doi: 10.11988/ckyyb.20160008

    [17]

    中华人民共和国水利部. 土的工程分类标准: GB/T 50145—2007[S]. 北京: 中国计划出版社, 2008.

    Ministry of Water Resources, PRC. Engineering classification standard for soils: GB/T 50145—2007[S]. Beijing: China Planning Press, 2008.(in Chinese)

    [18]

    张贵金, 肖通, 张聪, 等. 松散地层脉动与稳压灌浆室内试验研究[J]. 水文地质工程地质,2016,43(5):87 − 93. [ZHANG Guijin, XIAO Tong, ZHANG Cong, et al. An indoor experimental study of loose soil strata pulsating and regulated filling[J]. Hydrogeology & Engineering Geology,2016,43(5):87 − 93. (in Chinese with English abstract)

    [19]

    南京水利科学研究院. 土工试验规程: SL 237—1999[S]. 北京: 中国水利水电出版社, 1999.

    Nanjing Water Conservancy Research Institute. Code of geotechnical test: SL 237—1999[S]. Beijing: China Water Resources and Hydropower Press, 1999. (in Chinese)

    [20]

    中华人民共和国水利部. 水利水电工程地质勘察规范: GB 50487—2008[S]. 北京: 中国计划出版社, 2009.

    Ministry of Water Resources, PRC. Code for geological survey of water conservancy and hydropower projects: GB 50487—2008[S]. Beijing: China Planning Press, 2009. (in Chinese)

    [21]

    尚彦军, 王思敬, 岳中琦, 等. 全风化花岗岩孔径分布-颗粒组成-矿物成分变化特征及指标相关性分析[J]. 岩土力学,2004,25(10):1545 − 1550. [SHANG Yanjun, WANG Sijing, YUE Zhongqi, et al. Variation features of pore radius and particle diameter distributions and mineral content of completely decomposed granite and correlation of parameters[J]. Rock and Soil Mechanics,2004,25(10):1545 − 1550. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2004.10.007

    [22]

    赵柳, 陈秋南, 李建新, 等. 南岳地区全风化花岗岩的微观特性[J]. 湖南工程学院学报(自然科学版),2013,23(4):68 − 72. [ZHAO Liu, CHEN Qiunan, LI Jianxin, et al. Research on micro properties of Nanyue completely decomposed granite[J]. Journal of Hunan Institute of Engineering (Natural Science Edition),2013,23(4):68 − 72. (in Chinese with English abstract)

    [23]

    李晓鄂, 蔡胜华. 三峡工程坝基花岗岩力学性能的微观分析[J]. 电子显微学报,1995,14(5):379 − 384. [LI Xiaoe, CAI Shenghua. Microscopic analysis of mechanical properties on granite of dam foundation of Three Gorges project[J]. Journal of Chinese Electron Microscopy Society,1995,14(5):379 − 384. (in Chinese)

    [24]

    邹健, 张忠苗. 考虑压滤效应饱和黏土压密注浆球孔扩张理论[J]. 哈尔滨工业大学学报,2011,43(12):119 − 123. [ZOU Jian, ZHANG Zhongmiao. Spherical cavity expansion theory of compaction grouting in saturated clay considering pressure filtration[J]. Journal of Harbin Institute of Technology,2011,43(12):119 − 123. (in Chinese with English abstract)

  • 加载中

(10)

(3)

计量
  • 文章访问数:  890
  • PDF下载数:  67
  • 施引文献:  0
出版历程
收稿日期:  2020-06-11
修回日期:  2020-06-23
刊出日期:  2021-03-15

目录