基于无人机的滑坡地形快速重建与稳定性分析

张欢, 巨能攀, 陆渊, 万勋, 蹇志权. 基于无人机的滑坡地形快速重建与稳定性分析[J]. 水文地质工程地质, 2021, 48(6): 171-179. doi: 10.16030/j.cnki.issn.1000-3665.202008010
引用本文: 张欢, 巨能攀, 陆渊, 万勋, 蹇志权. 基于无人机的滑坡地形快速重建与稳定性分析[J]. 水文地质工程地质, 2021, 48(6): 171-179. doi: 10.16030/j.cnki.issn.1000-3665.202008010
ZHANG Huan, JU Nengpan, LU Yuan, WAN Xun, JIAN Zhiquan. Rapid remodeling of three-dimensional terrain and stability analyses of landslide based on UAV[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 171-179. doi: 10.16030/j.cnki.issn.1000-3665.202008010
Citation: ZHANG Huan, JU Nengpan, LU Yuan, WAN Xun, JIAN Zhiquan. Rapid remodeling of three-dimensional terrain and stability analyses of landslide based on UAV[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 171-179. doi: 10.16030/j.cnki.issn.1000-3665.202008010

基于无人机的滑坡地形快速重建与稳定性分析

详细信息
    作者简介: 张欢(1994-),男,硕士研究生,主要从事边坡稳定性方面的研究。E-mail:1269739527@qq.com
    通讯作者: 巨能攀(1973-),男,教授,博士生导师,主要从事高边坡工程及地质灾害监测预警的教学与研究工作。E-mail:jnp@cdut.edu.cn
  • 中图分类号: P642.2

Rapid remodeling of three-dimensional terrain and stability analyses of landslide based on UAV

More Information
  • 对滑坡进行快速准确的定量化调查评价可以为滑坡应急处置提供科学依据。无人机航摄系统以其机动灵活、响应迅速等特点,日益成为地质灾害调查的可靠手段。以册亨平庆组滑坡为例,将无人机摄影测量技术应用于滑坡的调查中,总结出一套基于轻型无人机航摄技术的边坡快速调查与定量评价方法:首先通过多种软件建立高精度三维地质模型,使用有限差分软件进行数值模拟;然后对滑坡变形机制进行分析,并对滑坡稳定性进行评价。研究结果表明:(1)通过Global mapper、Pix4Dmapper、Rhinoceros等软件对无人机采集数据进行处理并建立三维计算模型,具有简便、快捷、可靠的特点;(2)以无人机航摄为核心的滑坡调查评价,能将传统地质的定性分析和数值模拟的定量分析有效结合,为后续应急处置提供有力的依据及数据支撑;(3)册亨平庆组滑坡是在降雨条件下由坡体自重应力作用引发的蠕滑-拉裂式滑坡,调查时滑坡已启动,地面裂缝有加速扩展的趋势。

  • 加载中
  • 图 1  无人机遥感系统

    Figure 1. 

    图 2  基于无人机航摄的滑坡应急处置流程图

    Figure 2. 

    图 3  剖面位置及研究区域航迹图

    Figure 3. 

    图 4  册亨平庆组滑坡工程地质剖面图

    Figure 4. 

    图 5  数字正射影像

    Figure 5. 

    图 6  三维模型图(基于Smart3D)

    Figure 6. 

    图 7  灾害体解译结果

    Figure 7. 

    图 8  数字高程模型

    Figure 8. 

    图 9  FLAC3D计算模型及剖面选取

    Figure 9. 

    图 10  天然工况下位移分布特征

    Figure 10. 

    图 11  暴雨工况下位移分布特征

    Figure 11. 

    图 12  暴雨工况下塑性区分布特征

    Figure 12. 

    表 1  无人机和相机主要参数

    Table 1.  Main parameters of UAV and camera

    项目参数项目参数项目参数
    起飞重量907 g巡航速度17 m/s飞行高度500 m
    飞行时长31 min最大爬升速度5 m/s抗风能力5级
    相机类型Hasselblad
    L1D-20c
    传感器尺寸1英寸CMOS有效像素2 000万
    快门速度8-1/8 000 s最大照片尺寸5472×3648颜色表示sRGB
    下载: 导出CSV

    表 2  物理力学参数

    Table 2.  Values of physical and mechanical parameters

    岩类体积模量/
    GPa
    剪切模量/
    GPa
    密度/
    (kg·m-3
    黏聚力/
    MPa
    内摩擦角
    正切值
    抗拉强度/
    MPa
    黏土质粉砂岩30.512.82 4504.0312.12
    粉质黏土18.54.11 8901.3160.05
    下载: 导出CSV
  • [1]

    马娟, 张鸣之, 韩冰, 等. 地质灾害无人机调查数据管理云平台建设[J]. 中国地质灾害与防治学报,2019,30(1):100 − 105. [MA Juan, ZHANG Mingzhi, HAN Bing, et al. Cloud platform construction for geological hazards’ data from UAV survey[J]. The Chinese Journal of Geological Hazard and Control,2019,30(1):100 − 105. (in Chinese with English abstract)

    [2]

    刘传正. 重大突发地质灾害应急处置的基本问题[J]. 自然灾害学报,2006,15(3):24 − 30. [LIU Chuanzheng. Basic problem on emergency disposition of abrupt heavy geological disaster[J]. Journal of Natural Disasters,2006,15(3):24 − 30. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-4574.2006.03.005

    [3]

    巨能攀, 赵建军, 邓辉, 等. 黄山高速滑移弯曲边坡变形机理分析及应急治理对策[J]. 地球科学进展,2008,23(5):474 − 481. [JU Nengpan, ZHAO Jianjun, DENG Hui, et al. Analysis of deformation mechanism of sliding to bending slope and study of deformation emergency control at Huangshan expressway[J]. Advances in Earth Science,2008,23(5):474 − 481. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-8166.2008.05.006

    [4]

    李德仁, 李明. 无人机遥感系统的研究进展与应用前景[J]. 武汉大学学报(信息科学版),2014,39(5):505 − 513. [LI Deren, LI Ming. Research advance and application prospect of unmanned aerial vehicle remote sensing system[J]. Geomatics and Information Science of Wuhan University,2014,39(5):505 − 513. (in Chinese with English abstract)

    [5]

    胡可, 陈思思, 王俊伟. 无人机载红外载荷在应急测绘中的应用[J]. 测绘科学,2015,40(10):60 − 64. [HU Ke, CHEN Sisi, WANG Junwei. The application of infrared UAV payload in emergency mapping support[J]. Science of Surveying and Mapping,2015,40(10):60 − 64. (in Chinese with English abstract)

    [6]

    彭大雷, 许强, 董秀军, 等. 无人机低空摄影测量在黄土滑坡调查评估中的应用[J]. 地球科学进展,2017,32(3):319 − 330. [PENG Dalei, XU Qiang, DONG Xiujun, et al. Application of unmanned aerial vehicles low-altitude photogrammetry in investigation and evaluation of loess landslide[J]. Advances in Earth Science,2017,32(3):319 − 330. (in Chinese with English abstract) doi: 10.11867/j.issn.1001-8166.2017.03.0319

    [7]

    李奇, 冯华君, 徐之海, 等. 计算机立体视觉技术综述[J]. 光学技术,1999,25(5):71 − 73. [LI Qi, FENG Huajun, XU Zhihai, et al. Review of computer stereo vision technique[J]. Optical Technology,1999,25(5):71 − 73. (in Chinese with English abstract) doi: 10.3321/j.issn:1002-1582.1999.05.025

    [8]

    张恬洁, 康志忠. 融合深度相机点云与光学影像的室内三维建模[J]. 测绘科学,2016,41(12):217 − 223. [ZHANG Tianjie, KANG Zhizhong. Indoor 3D modeling of depth camera point cloud and optical image[J]. Science of Surveying and Mapping,2016,41(12):217 − 223. (in Chinese with English abstract)

    [9]

    吴建岳. 一种基于点云数据的三维建模方法研究[J]. 浙江国土资源,2019(9):51 − 52. [WU Jianyue. A 3D modeling method based on point cloud data[J]. Zhejiang Land & Resources,2019(9):51 − 52. (in Chinese) doi: 10.3969/j.issn.1672-6960.2019.09.024

    [10]

    杨明军, 康冰锋, 韩丹. 基于LiDAR和倾斜摄影测量技术的实景三维自动化建模方法[J]. 科技资讯,2018,16(33):93 − 96. [YANG Mingjun, KANG Bingfeng, HAN Dan. 3D automatic modeling method based on lidar and tilt photogrammetry[J]. Science & Technology Information,2018,16(33):93 − 96. (in Chinese with English abstract)

    [11]

    鲁恒, 李永树, 李何超, 等. 无人机影像数字处理及在地震灾区重建中的应用[J]. 西南交通大学学报,2010,45(4):533 − 538. [LU Heng, LI Yongshu, LI Hechao, et al. Digital processing of unmanned aerial vehicle image and its application in reconstruction of Wenchuan earthquake-hit areas[J]. Journal of Southwest Jiaotong. University,2010,45(4):533 − 538. (in Chinese with English abstract) doi: 10.3969/j.issn.0258-2724.2010.04.008

    [12]

    王国洲. 无人机航摄系统在贵州地质灾害应急中的应用[J]. 地理空间信息,2010,8(5):1 − 3. [WANG Guozhou. Application of unmanned air vehicle aerial photographic system to geological survey in disaster response in Guizhou Province[J]. Geospatial Information,2010,8(5):1 − 3. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-4623.2010.05.001

    [13]

    赵星涛, 胡奎, 卢晓攀, 等. 无人机低空航摄的矿山地质灾害精细探测方法[J]. 测绘科学,2014,39(6):49 − 52. [ZHAO Xingtao, HU Kui, LU Xiaopan, et al. Precise detection method for mine geological disasters using low-altitude photogrammetry based on unmanned aerial vehicle[J]. Science of Surveying and Mapping,2014,39(6):49 − 52. (in Chinese with English abstract)

    [14]

    ŞASİ A, YAKAR M. Photogrammetric modelling of sakahane masjid using an unmanned aerial vehicle[J]. Turkish Journal of Engineering,2017,1(2):82 − 87.

    [15]

    ANUROGO W, LUBIS M Z, KHOIRUNNISA H, et al. A simple aerial photogrammetric mapping system overview and image acquisition using unmanned aerial vehicles (UAVs)[J]. Journal of Applied Geospatial Information,2017,1(1):11 − 18. doi: 10.30871/jagi.v1i01.360

    [16]

    LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision,2004,60(2):91 − 110. doi: 10.1023/B:VISI.0000029664.99615.94

    [17]

    高姣姣, 颜宇森, 盛新蒲, 等. 无人机遥感在西气东输管道地质灾害调查中的应用[J]. 水文地质工程地质,2010,37(6):126 − 129. [GAO Jiaojiao, YAN Yusen, SHENG Xinpu, et al. Application of UAV remote sensing in Geologic hazards survey along the Project of west-east Gas transmission[J]. Hydrogeology & Engineering Geology,2010,37(6):126 − 129. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2010.06.025

    [18]

    管建军, 王俊豪, 王双亭, 等. 无人机倾斜摄影在黄土地区泥石流灾害调查与评价中的应用[J]. 中国地质灾害与防治学报,2017,28(4):137 − 145. [GUAN Jianjun, WANG Junhao, WANG Shuangting, et al. Application of UAV oblique photography in investigation and evaluation of debris flow disasters in loess area[J]. The Chinese Journal of Geological Hazard and Control,2017,28(4):137 − 145. (in Chinese with English abstract)

    [19]

    何敬, 李永树, 鲁恒, 等. 无人机影像的质量评定及几何处理研究[J]. 测绘通报,2010(4):22 − 24. [HE Jing, LI Yongshu, LU Heng, et al. Research of UAV image quality evaluation and geometry processing[J]. Bulletin of Surveying and Mapping,2010(4):22 − 24. (in Chinese)

    [20]

    王明, 李丽慧, 廖小辉, 等. 基于无人机航摄的高陡/直立边坡快速地形测量及三维数值建模方法[J]. 工程地质学报,2019,27(5):1000 − 1009. [WANG Ming, LI Lihui, LIAO Xiaohui, et al. Rapid topographic measurement and three-dimensional numerical modeling method for high-steep/upright slopes based on aerial photography of UAV[J]. Journal of Engineering Geology,2019,27(5):1000 − 1009. (in Chinese with English abstract)

    [21]

    THOMAS H, BRIGAUD B, BLAISE T, et al. Contribution of drone photogrammetry to 3D outcrop modeling of facies, porosity, and permeability heterogeneities in carbonate reservoirs (Paris Basin, Middle Jurassic)[J]. Marine and Petroleum Geology,2021:123.

    [22]

    PARK H, LEE D. Comparison between point cloud and mesh models using images from an unmanned aerial vehicle[J]. Measurement,2019,138:461 − 466. doi: 10.1016/j.measurement.2019.02.023

    [23]

    SERIFOGLU YILMAZ C, YILMAZ V, GÜNGÖR O. Investigating the performances of commercial and non-commercial software for ground filtering of UAV-based point clouds[J]. International Journal of Remote Sensing,2018,39(15/16):5016 − 5042.

    [24]

    黄海宁, 黄健, 周春宏, 等. 无人机影像在高陡边坡危岩体调查中的应用[J]. 水文地质工程地质,2019,46(6):149 − 155. [HUANG Haining, HUANG Jian, ZHOU Chunhong, et al. Application of UAV images to rockfall investigation at the high and steep slope[J]. Hydrogeology & Engineering Geology,2019,46(6):149 − 155. (in Chinese with English abstract)

  • 加载中

(12)

(2)

计量
  • 文章访问数:  2099
  • PDF下载数:  100
  • 施引文献:  0
出版历程
收稿日期:  2020-08-02
修回日期:  2021-01-27
刊出日期:  2021-11-15

目录