An experimental study of removal of chromium from contaminated soft soil with the electrokinetic soil flushing method considering temperature and low voltage
-
摘要:
针对铬污染软土,自行设计了电动淋洗试验装置,开展了铬污染软土室内土柱淋洗试验,分析了试验过程中电流、电解质溶液pH的变化以及淋洗液种类、外加电压、温度对重金属铬去除特性的影响。结果表明:电动淋洗试验可以有效去除土壤中的重金属铬;相对于单一淋洗试验,用10 V电压强化淋洗试验显著提高了重金属铬去除效果,淋洗液为十二烷基苯磺酸钠(SDS)时Cr(VI)和Cr(总)去除效率是单一淋洗法的2.79,3.12倍。当电压为10 V,温度升高至45 ℃时,淋洗液为柠檬酸(CA)和草酸(OA)的各组试验表明Cr(Ⅵ)与Cr(总)去除率均相应提高;而淋洗液为十二烷基苯磺酸钠时的试验组中Cr(VI)去除率提高了5.84%,Cr(总)去除率降低了4.25%,表明升高温度使部分Cr(VI)还原成不易迁移的Cr(III);淋洗液为草酸的试验组中升高温度时Cr(Ⅵ)与Cr(总)去除率最高,分别达到了82.08%、77.57%,分别相应提高了27.65%、26.01%。电动淋洗试验后,铬污染软土土粒结构变得更紧密,土粒之间的孔隙减小且被填充的更加密实。
Abstract:A series of column tests of chromium-contaminated soft soil were performed in lab using self-designed electrokinetic soil flushing apparatus considering temperature. The changes of the current and electrolyte solution pH, and the effects of the type of leaching agent (i.e. sodium dodecylbenzene sulfonate, citric acid and oxalic acid), applied voltage and temperature on the removal behavior of chromium were analyzed. The results show that chromium in soil can be removed effectively with the electrokinetic soil flushing method. Compared with the single soil flushing method using sodium dodecylbenzene sulfonate (SDS), the removal ratio of Cr(VI) and Cr(total) can increase to 2.79 and 3.12 times when the voltage of 10 V is applied. When the raising temperature increases to 45 ℃, the removal ratio of Cr(VI) and Cr(total) both are greatly improved as citric acid (CA) and oxalic acid (OA) are leaching agents, while the removal ratio of Cr(total) decreases by 4.25% when using SDS as leaching agent. The group using oxalic acid as leaching agent shows the best removal efficiency, and the removal ratio of Cr(VI) and Cr(total) reach 82.08% and 77.57%, respectively. After remediation, the soil structure has changed, and pores between soil particles become smaller and the soils are more compacted.
-
Key words:
- electrokinetics /
- contaminated soft soil /
- chromium /
- remediation /
- temperature
-
表 1 试验分组
Table 1. Experimental groups
编号 淋洗液种类 电压/V 温度/℃ SF 0.5%KCl 0 5 SF-SDS 0.5%KCl、0.5%SDS 0 5 SFEK-SDS 0.5%KCl、0.5%SDS 10 5 SFEK45-SDS 0.5%KCl、0.5%SDS 10 45 SF-CA 0.5%KCl、0.5%CA 0 5 SFEK-CA 0.5%KCl、0.5%CA 10 5 SFEK45-CA 0.5%KCl、0.5%CA 10 45 SF-OA 0.5%KCl、0.5%OA 0 5 SFEK-OA 0.5%KCl、0.5%OA 10 5 SFEK45-OA 0.5%KCl、0.5%OA 10 45 注:淋洗液浓度为质量浓度。 表 2 土柱中Cr(Ⅵ)、Cr(总)残余浓度及能耗
Table 2. Residual concentration of Cr(VI)and Cr(total)in soil columns and energy consumption
编号 浓度/(mg·kg−1) 去除率/% 能耗/
(10−3 kW·h)消耗电能E/(kW·h·kg−1) 淋出液Cr
(总)浓度/
(mg·kg−1)1 2 3 4 5 SF Cr(Ⅵ) 1111 1123 1072 999 862 13.88 − − 5.2 Cr(总) 1298 1311 1377 1277 1011 10.37 SF-SDS Cr(Ⅵ) 969.6 932.4 1022.4 1026 529.2 25.34 − − 9.44 Cr(总) 1066.8 1212 1344 1192.8 624 22.29 SFEK-SDS Cr(Ⅵ) 501 511 372 201 180 70.58 3.06 14.96 33.98 Cr(总) 535 531 466 386 211 69.59 SFEK45-SD Cr(Ⅵ) 304 448 377 267 227 74.70 4.47 22.82 34.12 Cr(总) 410 619 617 477 213 66.63 SF-CA Cr(Ⅵ) 936 943.2 951.6 918 579.6 27.86 − − 11.78 Cr(总) 967.2 1197.6 1184.4 957.6 825.6 26.68 SFEK-CA Cr(Ⅵ) 510 613 599 390 227 61.02 2.40 15.12 24.22 Cr(总) 533 654 896 740 397 54 SFEK45-CA Cr(Ⅵ) 498 362 316 279 162 74.05 2.91 17.25 26.9 Cr(总) 662 695 739 599 288 57.39 SF-OA Cr(Ⅵ) 961.2 1054.8 879.6 932.4 493.2 27.98 − − 14.15 Cr(总) 1016.4 1114.8 926.4 967.2 589.2 34.09 SFEK-OA Cr(Ⅵ) 638 482 552 303 167 64.3 2.97 16.41 26.78 Cr(总) 766 497 808 307 313 61.56 SFEK45-OA Cr(Ⅵ) 298 274 218 187 98 82.08 2.46 10.79 42.3 Cr(总) 388 355 339 290 198 77.57 -
[1] HE J Y, HE C Q, CHEN X P, et al. Comparative study of remediation of Cr(VI)-contaminated soil using electrokinetics combined with bioremediation[J]. Environmental Science and Pollution Research,2018,25(18):17682 − 17689. doi: 10.1007/s11356-018-1741-8
[2] DHAL B, THATOI H N, DAS N N, et al. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review[J]. Journal of Hazardous Materials,2013,250/251:272 − 291. doi: 10.1016/j.jhazmat.2013.01.048
[3] HE Z, SHENTU U, YANG X, et al. Heavy metal contamination of soils: sources, indicators, and assessment[J]. Journal of Environmental Indicators,2015,9:17 − 18.
[4] LIU L W, LI W, SONG W P, et al. Remediation techniques for heavy metal-contaminated soils: Principles and applicability[J]. Science of the Total Environment,2018,633:206 − 219. doi: 10.1016/j.scitotenv.2018.03.161
[5] 金依婷, 王艳, 李轲轲, 等. 络合剂淋洗Cu污染粉土的土柱试验研究[J]. 水文地质工程地质,2018,45(2):165 − 170. [JIN Yiting, WANG Yan, LI Keke, et al. A study of soil column experiments for copper contaminated silt flushed by chelating agents[J]. Hydrogeology & Engineering Geology,2018,45(2):165 − 170. (in Chinese with English abstract)
[6] 董汉英, 仇荣亮, 赵芝灏, 等. 工业废弃地多金属污染土壤组合淋洗修复技术研究[J]. 土壤学报,2010,47(6):1126 − 1133. [DONG Hanying, QIU Rongliang, ZHAO Zhihao, et al. Sequential elution technique for remediation of multi-metal contaminated brownfield soils[J]. Acta Pedologica Sinica,2010,47(6):1126 − 1133. (in Chinese with English abstract) doi: 10.11766/trxb200906020241
[7] ZHANG H J, GAO Y T, XIONG H B. Removal of heavy metals from polluted soil using the citric acid fermentation broth: a promising washing agent[J]. Environmental Science and Pollution Research,2017,24(10):9506 − 9514. doi: 10.1007/s11356-017-8660-y
[8] 郑复乐, 姚荣江, 杨劲松, 等. 淋洗液对沿海滩涂设施土壤重金属的洗脱效应[J]. 中国环境科学,2018,38(11):4218 − 4227. [ZHENG Fule, YAO Rongjiang, YANG Jinsong, et al. Eluting effects of different eluents on heavy metals in greenhouse soils from coastal mudflat area[J]. China Environmental Science,2018,38(11):4218 − 4227. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6923.2018.11.030
[9] 曹晓雅, 曹俊雅, 李媛媛, 等. 表面活性剂对SRB修复Cr污染土壤的影响[C]//中国化工学会2013年学术年会. 南京, 2013: 477.
CAO Xiaoya, CAO Junya, LI Yuanyuan, et al. Effect of surfactants on SRB repairing Cr contaminated soil[C]//China Chemical Industry Association 2013 Academic Annual Meeting. Nanjing, 2013: 477. (in Chinese with English abstract)
[10] LI D, SUN D L, HU S Y, et al. Conceptual design and experiments of electrochemistry-Flushing technology for the remediation of historically Cr(Ⅵ)-contaminated soil[J]. Chemosphere,2016,144:1823 − 1830. doi: 10.1016/j.chemosphere.2015.09.077
[11] LI D, JI G Z, HU J, et al. Remediation strategy and electrochemistry Flushing &reduction technology for real Cr(VI)-contaminated soils[J]. Chemical Engineering Journal,2018,334:1281 − 1288. doi: 10.1016/j.cej.2017.11.074
[12] PENG G Q, TIAN G M. Using electrode electrolytes to enhance electrokinetic removal of heavy metals from electroplating sludge[J]. Chemical Engineering Journal,2010,165(2):388 − 394. doi: 10.1016/j.cej.2010.10.006
[13] FU R B, WEN D D, CHEN X, et al. Treatment of decabromodiphenyl ether (BDE209) contaminated soil by solubilizer-enhanced electrokinetics coupled with ZVI-PRB[J]. Environmental Science and Pollution Research,2017,24(15):13509 − 13518. doi: 10.1007/s11356-017-8919-3
[14] 蔡光华, 陆海军, 刘松玉. 温度梯度下压实黏土的水热迁移规律和渗透特性[J]. 东北大学学报(自然科学版),2017,38(6):874 − 879. [CAI Guanghua, LU Haijun, LIU Songyu. Moisture-heat migration laws and permeability of compacted clay under temperature gradient[J]. Journal of Northeastern University (Natural Science),2017,38(6):874 − 879. (in Chinese with English abstract) doi: 10.12068/j.issn.1005-3026.2017.06.023
[15] 司马文霞, 骆玲, 袁涛, 等. 土壤电阻率的温度特性及其对直流接地极发热的影响[J]. 高电压技术,2012,38(5):1192 − 1198. [SIMA Wenxia, LUO Ling, YUAN Tao, et al. Temperature characteristic of soil resistivity and its effect on the DC grounding electrode heating[J]. High Voltage Engineering,2012,38(5):1192 − 1198. (in Chinese with English abstract)
[16] 孟凡生, 王业耀. 铬(VI)污染土壤电动修复影响因素研究[J]. 农业环境科学学报,2006,25(4):983 − 987. [MENG Fansheng, WANG Yeyao. Influencing factors of electrokinetic remediation for chromium-polluted soils[J]. Journal of Agro-Environment Science,2006,25(4):983 − 987. (in Chinese with English abstract) doi: 10.3321/j.issn:1672-2043.2006.04.033
[17] RUI D H, WU Z P, JI M, et al. Remediation of Cd- and Pb- contaminated clay soils through combined freeze-thaw and soil washing[J]. Journal of Hazardous Materials,2019,369:87 − 95. doi: 10.1016/j.jhazmat.2019.02.038
[18] 郑凌逶, 谢新宇, 谢康和, 等. 电渗法加固地基试验及应用研究进展[J]. 浙江大学学报(工学版),2017,51(6):1064 − 1073. [ZHENG Lingwei, XIE Xinyu, XIE Kanghe, et al. Test and application research advance on foundation reinforcement by electro-osmosis method[J]. Journal of Zhejiang University (Engineering Science),2017,51(6):1064 − 1073. (in Chinese with English abstract) doi: 10.3785/j.issn.1008-973X.2017.06.002
[19] 闫峰, 刘合满, 梁东丽, 等. 不同土壤对Cr吸附的动力学特征[J]. 农业工程学报,2008,24(6):21 − 25. [YAN Feng, LIU Heman, LIANG Dongli, et al. Kinetic characteristics of hexavalent chromium apparent adsorption on different soils[J]. Transactions of the Chinese Society of Agricultural Engineering,2008,24(6):21 − 25. (in Chinese with English abstract) doi: 10.3321/j.issn:1002-6819.2008.06.004
[20] SAKELLARIOU L, PAPASSIOPI N. An approach to electrokinetic removal of Cr(VI) from soil and Kaolin samples[J]. Bulletin of Environmental Contamination and Toxicology,2018,101(6):718 − 724. doi: 10.1007/s00128-018-2432-3
[21] KUMAR V, CHITHRA K. Removal of Cr(VI) from spiked soils by electrokinetics[J]. Research Journal of Chemistry and Environment,2013,17(8):52 − 59.