“引哈济党”工程对敦煌盆地地下水位影响的数值模拟研究

何剑波, 李玉山, 胡立堂, 尹政, 胡彦斌. “引哈济党”工程对敦煌盆地地下水位影响的数值模拟研究[J]. 水文地质工程地质, 2021, 48(6): 34-43. doi: 10.16030/j.cnki.issn.1000-3665.202012018
引用本文: 何剑波, 李玉山, 胡立堂, 尹政, 胡彦斌. “引哈济党”工程对敦煌盆地地下水位影响的数值模拟研究[J]. 水文地质工程地质, 2021, 48(6): 34-43. doi: 10.16030/j.cnki.issn.1000-3665.202012018
HE Jianbo, LI Yushan, HU Litang, YIN Zheng, HU Yanbin. Numerical simulation studies of the influences of water transferring project from the Haerteng River to the Dang River on groundwater levels in the Dunhuang Basin[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 34-43. doi: 10.16030/j.cnki.issn.1000-3665.202012018
Citation: HE Jianbo, LI Yushan, HU Litang, YIN Zheng, HU Yanbin. Numerical simulation studies of the influences of water transferring project from the Haerteng River to the Dang River on groundwater levels in the Dunhuang Basin[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 34-43. doi: 10.16030/j.cnki.issn.1000-3665.202012018

“引哈济党”工程对敦煌盆地地下水位影响的数值模拟研究

  • 基金项目: 甘肃省地下水工程及地热资源重点实验室开放基金项目(201907);国家自然科学基金面上基金项目(41877173)
详细信息
    作者简介: 何剑波(1989-),男,工程师,主要从事水文地质、环境地质方面的研究。E-mail:hjb_candy@163.com
    通讯作者: 胡立堂(1976-),男,教授,主要从事渗流模拟研究和教学工作。E-mail: litanghu@bnu.edu.cn
  • 中图分类号: P641.2

Numerical simulation studies of the influences of water transferring project from the Haerteng River to the Dang River on groundwater levels in the Dunhuang Basin

More Information
  • 国务院批准的《敦煌水资源合理利用与生态保护综合规划(2011—2020)》旨在缓解敦煌盆地水资源的合理利用与生态保护之间的矛盾。随着规划的实施,近年来盆地内水面的面积增大,作为规划骨干工程之一的“引哈济党”工程的实施必要性得到质疑。地下水是盆地重要的水源,也是影响西湖自然保护区等生态的关键因素。为定量分析引哈济党工程不同调水量下盆地地下水位时空演化态势,本研究建立了地下水三维流数值模型,结合长期观测井和统测井水位等数据对模型进行了识别和验证。模型应用发现:2010—2018年区域年均地下水储量亏空约0.40×108 m3,主要分布于党河洪积扇区和党河灌区北部,但党河灌区和西湖自然保护区核心区的地下水储量亏空分别约2.62×106,9.99×106 m3。采用模型预测了调水量为0.80×108,0.90×108 ,1.00×108,1.20×108 m3/a时,50年后地下水位动态,发现党河洪积扇地下水位回升5.0~20.0 m,月牙泉区地下水位回升7.0~15.0 m,而西湖自然保护区在模拟期内地下水位回升0.5 m以内。地下水侧向径流补给是西湖自然保护区核心区的重要和持续的补给水源,“引哈济党”工程将确保西湖地下水位的缓慢回升。研究结果可为“引哈济党”工程的实施论证提供重要参考。

  • 加载中
  • 图 1  研究区平面(a)和剖面图(b)

    Figure 1. 

    图 2  玉门试验站潜水蒸发系数与地下水位埋深的关系

    Figure 2. 

    图 3  4个典型观测孔观测和模拟水位对比曲线

    Figure 3. 

    图 4  模型识别和验证期22眼长观孔的纳什效率系数和数据变异系数比较

    Figure 4. 

    图 5  2018年12月模拟和观测的潜水位等值线图

    Figure 5. 

    图 6  2010—2018年平均地下水储量变化空间分布

    Figure 6. 

    图 7  敦煌盆地主要地下水均衡项2010—2018年变化趋势

    Figure 7. 

    图 8  4种调水情景预测的50年后敦煌盆地上升地下水位等值线(a,b,c和d分别为S1、S2、S3和S4情景)

    Figure 8. 

    图 9  4种调水情景预测的4个典型观测孔地下水位变化曲线

    Figure 9. 

  • [1]

    甘肃省发展与改革委员会, 甘肃省水利厅, 酒泉市人民政府. 敦煌水资源合理利用与生态保护综合规划[R]. 2009

    Gansu Provincial Development and Reform Commission, Water Resources Department of Gansu Province, Jiuquan People’s Government. Comprehensive planning of rational utilization of water resources and ecological protection in Dunhuang [R]. 2009. (in Chinese)

    [2]

    YANG Z Q, HU L T, SUN K N. The potential impacts of a water transfer project on the groundwater system in the Sugan Lake Basin of China[J]. Hydrogeology Journal,2021,29(4):1485 − 1499. doi: 10.1007/s10040-021-02337-9

    [3]

    李世明, 程国栋, 李元红, 等. 河西走廊水资源合理利用与生态环境保护[M]. 郑州: 黄河水利出版社, 2002

    LI Shiming, CHENG Guodong, LI Yuanhong, et al. Reasonable utilization of water resources and ecological environment protection in Hexi Corridor [M]. Zhengzhou: The Yellow River Water Conservancy Press, 2002. (in Chinese)

    [4]

    张宗祜, 李烈荣. 新一轮全国地下水资源评价项目成果: 中国地下水资源(甘肃卷)[M]. 北京: 中国地图出版社, 2005

    ZHANG Zonghu, LI Lierong. The new round of national groundwater resources evaluation projects: China Groundwater Resources (Gansu Volume)[M]. Beijing: Sino Maps Press, 2005. (in Chinese)

    [5]

    程旭学, 陈崇希, 闫成云, 等. 河西走廊疏勒河流域地下水资源合理开发利用调查评价[M]. 北京: 地质出版社, 2008

    CHENG Xuxue, CHEN Chongxi, YAN Chengyun, et al. Investigation and Evaluation on Reasonable Development and Utilization of Groundwater Resources in Shule River Basin of Hexi Corridor [M]. Beijing: Geological Publishing House, 2008. (in Chinese)

    [6]

    陈志恺. 西北地区水资源配置生态环境建设和可持续发展战略, 研究水资源卷[M]. 北京: 科学出版社, 2004.

    CHEN Zhikai, WANG Hao, WANG Dangxian. Chinese academy of engineering key consulting project water resources allocation, ecological environment construction and sustainable development strategy in Northwest China (water resources volume): Analysis on the development trend of water resources and is supply and demand in Northwest China [M]. Beijing: Science Press, 2004. (in Chinese)

    [7]

    JIAO J J. Crescent moon spring: a disappearing natural wonder in the Gobi desert, China[J]. Groundwater,2010,48(1):159 − 163. doi: 10.1111/j.1745-6584.2009.00599.x

    [8]

    STONE R. CULTURAL HERITAGE: shielding a Buddhist shrine from the howling desert sands[J]. Science,2008,321(5892):1035. doi: 10.1126/science.321.5892.1035

    [9]

    段浩, 潘世兵, 李琳, 等. 敦煌西湖自然保护区湿地演化及驱动力分析[J]. 地球信息科学学报,2015,17(2):222 − 228. [DUAN Hao, PAN Shibing, LI Lin, et al. Analysis on wetland evolution and its driving factors of Dunhuang Xihu nature protection area[J]. Journal of Geo-Information Science,2015,17(2):222 − 228. (in Chinese with English abstract)

    [10]

    ZHANG X X, XIE Y W. Detecting historical vegetation changes in the Dunhuang oasis protected area using landsat images[J]. Sustainability,2017,9(10):1780. doi: 10.3390/su9101780

    [11]

    GUO X Y, FENG Q, SI J H, et al. Identifying the origin of groundwater for water resources sustainable management in an arid oasis, China[J]. Hydrological Sciences Journal,2019,64(10):1253 − 1264. doi: 10.1080/02626667.2019.1619080

    [12]

    MA J Z, HE J H, QI S, et al. Groundwater recharge and evolution in the Dunhuang Basin, northwestern China[J]. Applied Geochemistry,2013,28:19 − 31. doi: 10.1016/j.apgeochem.2012.10.007

    [13]

    ZHANG X F, ZHANG L H, HE C S, et al. Quantifying the impacts of land use/land cover change on groundwater depletion in Northwestern China - A case study of the Dunhuang oasis[J]. Agricultural Water Management,2014,146:270 − 279. doi: 10.1016/j.agwat.2014.08.017

    [14]

    CHEN W T, WANG Y X, LI X J, et al. Land use/land cover change and driving effects of water environment system in Dunhuang Basin, northwestern China[J]. Environmental Earth Sciences,2016,75(12):1 − 11.

    [15]

    LIN J J, MA R, HU Y L, et al. Groundwater sustainability and groundwater/surface-water interaction in arid Dunhuang Basin, northwest China[J]. Hydrogeology Journal,2018,26(5):1559 − 1572. doi: 10.1007/s10040-018-1743-0

    [16]

    胡立堂, 许新宜, 王红旗. 缺观测资料干旱地区区域地下水模型可靠性探讨[J]. 北京师范大学学报(自然科学版),2013,49(增刊1):227 − 232. [HU Litang, XU Xinyi, WANG Hongqi. Reliability of regional groundwater model in ungauged arid regions[J]. Journal of Beijing Normal University (Natural Science),2013,49(Sup1):227 − 232. (in Chinese with English abstract)

    [17]

    杨根生, 曲耀光, 董光荣, 等. 疏勒河下游生态保护研究[J]. 中国沙漠,2005,25(4):472 − 482. [YANG Gensheng, QU Yaoguang, DONG Guangrong, et al. Study on ecology protection in lower reaches area of the Sulehe river[J]. Journal of Desert Research,2005,25(4):472 − 482. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-694X.2005.04.004

    [18]

    翁文斌, 王忠静, 赵建世. 现代水资源规划—理论、方法和技术[M]. 北京: 清华大学出版社, 2004.

    WENG Wenbing, WANG Zhongjing, ZHAO Jianshi. Advanced water resources planning: theory, method and technology [M]. Beijing: Tsinghua University Press, 2004. (in Chinese)

    [19]

    陈崇希, 胡立堂, 王旭升. 地下水流模拟系统PGMS(1.0版)简介[J]. 水文地质工程地质,2007,34(6):I − II. [CHEN Chongxi, HU Litang, WANG Xusheng. Introduction to groundwater flow modelling system (PGMS 1.0)[J]. Hydrogeology & Engineering Geology,2007,34(6):I − II. (in Chinese)

    [20]

    MCCUEN R H, KNIGHT Z, CUTTER A G. Evaluation of the Nash–sutcliffe efficiency index[J]. Journal of Hydrologic Engineering,2006,11(6):597 − 602. doi: 10.1061/(ASCE)1084-0699(2006)11:6(597)

  • 加载中

(9)

计量
  • 文章访问数:  1385
  • PDF下载数:  59
  • 施引文献:  0
出版历程
收稿日期:  2020-12-10
修回日期:  2021-03-20
刊出日期:  2021-11-15

目录