An analysis of the coseismic differential response characteristics of well water levels and chemical components : A case study triggered by the Qingbaijiang earthquake
-
摘要:
相邻监测井的同震差异响应分析是研究地下水同震响应机理的路径之一。2020年2月3号青白江地震引发了龙泉山地下水监测井水位及水质的异常变化。利用多种水化学组分及水位的自动监测数据分析了相邻两口监测井的同震差异响应特征,讨论了水化学组分及水位差异响应机理。在相同能量密度情况下,ZK1水位变幅较ZK6大,表明ZK1对本次地震响应的敏感性高于ZK6。地震主要引起了处于还原环境(Eh<0)的第二含水层(主要离子为
和< span class="inline-formula-span" > < span class="inline-formula-span" > ${\rm{NH}}_4^+ $ < /span > < img text_id='' class='formula-img' style='display:none;' src='202104019_Z-20210916092230.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='202104019_Z-20210916092230.png'/ > )中地下水向ZK1的排泄,而处于氧化环境(Eh>0)的第一含水层(高浓度Cl−,高TDS及pH)中地下水主要向ZK6排泄。不同含水层水体向井排泄和混合是造成两口井地下水化学组分差异响应的原因。根据震后井水位及水化学组分的趋势变化规律分析,岩体在地震作用下的不排水体积改变是造成地下水水位阶跃变化的主要原因,ZK1周围第二含水层发生了塑性变形,渗透性发生了永久改变,而ZK6周围岩体发生弹性变形,渗透性未发生永久改变。< span class="inline-formula-span" > < span class="inline-formula-span" > ${\rm{NO}}_3^- $ < /span > < img text_id='' class='formula-img' style='display:none;' src='202104019_Z-20210916085441.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='202104019_Z-20210916085441.png'/ > Abstract:Analysis of the coseismic differential response of adjacent monitoring wells is an important way to study the coseismic response mechanism of groundwater. On February 3, 2020, the Qingbaijiang earthquake caused the abnormal changes of groundwater levels and water quality in the monitoring wells of Longquanshan. In this paper, the coseismic differential response characteristics of two adjacent monitoring wells are analyzed by using the automatic monitoring data of various hydrochemical components and water levels. Based on the coupling response characteristics of hydrochemical components and water levels, the mechanism of differential response of hydrochemical components and water levels is discussed. In the case of the same energy density, the water level variation amplitude of well ZK1 is larger than that of well ZK6, which indicates that ZK1 is more sensitive to the earthquake response than ZK6. The earthquake mainly caused the discharge of the groundwater (Eh<0) from the second aquifer (
and< span class="inline-formula-span" > < span class="inline-formula-span" > ${\rm{NH}}_4^+ $ < /span > < img text_id='' class='formula-img' style='display:none;' src='202104019_Z-20210916092307.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='202104019_Z-20210916092307.png'/ > ) to ZK1, while the groundwater (Eh>0) from the first aquifer (high concentration of Cl−, TDS, and pH) to ZK6. The discharge and mixing of water from different aquifers into the wells are the reason for the different response of chemical components of groundwater in these two wells. According to the trends of chemical components and water levels after the earthquake, rock mass under seismic action of undrained volume change is the main cause of groundwater water status step change, that is, plastic deformation and permanent change in permeability occurred in the second aquifer around well ZK1, and no permanent change in permeability but elastic deformation occurred in rock mass around well ZK6.< span class="inline-formula-span" > < span class="inline-formula-span" > ${\rm{NO}}_3^- $ < /span > < img text_id='' class='formula-img' style='display:none;' src='202104019_Z-20210916085527.png'/ > < /span > < img text_id='' class='formula-img' style='display:none;' src='202104019_Z-20210916085527.png'/ > -
Key words:
- monitoring wells /
- hydrochemical components /
- water level /
- coseismic response /
- permeability of aquifer
-
-
图 8 青白江地震在监测井位置的能量密度(修改自文献[14])
Figure 8.
表 1 ZK1和ZK6水位及水化学参数同震变化表
Table 1. Coseismic response of water levels and chemical components in ZK1and ZK6
井号 阶段 水位埋深/m Cl−/(mg·L−1) /(mg·L−1)
/(mg·L−1)
pH Eh/mV TDS/(mg·L−1) 温度/℃ ZK1 震前 12.36 2280 / / / / 1435.5 / 震后 11.56 2084 / / / / 1384.9 / ZK6 震前 13.43 3575 0.1 / 7.27 481 1888.7 / 震后 13.18 4327 1.4 / 7.35 404 2247.3 / 注:“/”表示震前及震后无明显异常。 -
[1] ELKHOURY J E, BRODSKY E E, AGNEW D C. Seismic waves increase permeability[J]. Nature,2006,441(7097):1135 − 1138. doi: 10.1038/nature04798
[2] YECHIELI Y, BEIN A. Response of groundwater systems in the Dead Sea Rift Valley to the Nuweiba earthquake: Changes in head, water chemistry, and near-surface effects[J]. Journal of Geophysical Research:Solid Earth,2002,107(B12):ETG4-1 − ETG4-10. doi: 10.1029/2001JB001100
[3] SHI Z M, WANG G C, MANGA M, et al. Mechanism of co-seismic water level change following four great earthquakes-insights from co-seismic responses throughout the Chinese mainland[J]. Earth and Planetary Science Letters,2015,430:66 − 74. doi: 10.1016/j.jpgl.2015.08.012
[4] 向阳, 孙小龙, 杨朋涛, 等. 2019年长宁M6.0 和2018年兴文M5.7 地震引起的井水位同震响应对比分析[J]. 地震,2020,40(2):155 − 165. [XIANG Yang, SUN Xiaolong, YANG Pengtao, et al. Comparative analysis of coseismic well water level response caused by 2019 Changning M6.0 and 2018 Xingwen M5.7 earthquakes[J]. Earthquake,2020,40(2):155 − 165. (in Chinese with English abstract) doi: 10.12196/j.issn.1000-3274.2020.02.012
[5] LAI G J, JIANG C S, HAN L B, et al. Co-seismic water level changes in response to multiple large earthquakes at the LGH well in Sichuan, China[J]. Tectonophysics,2016,679:211 − 217. doi: 10.1016/j.tecto.2016.04.047
[6] XIANG Y, SUN X L, GAO X Q. Different coseismic groundwater level changes in two adjacent wells in a fault-intersected aquifer system[J]. Journal of Hydrology,2019,578:124123. doi: 10.1016/j.jhydrol.2019.124123
[7] LIU Q Y, CHEN S Y, CHEN L C, et al. Detection of groundwater flux changes in response to two large earthquakes using long-term bedrock temperature time series[J]. Journal of Hydrology,2020,590:125245. doi: 10.1016/j.jhydrol.2020.125245
[8] ROSEN M R, BINDA G, ARCHER C, et al. Mechanisms of earthquake-induced chemical and fluid transport to carbonate groundwater springs after earthquakes[J]. Water Resources Research,2018,54(8):5225 − 5244. doi: 10.1029/2017WR022097
[9] SHI Z M, ZHANG H, WANG G C. Groundwater trace elements change induced by M5.0 earthquake in Yunnan[J]. Journal of Hydrology,2020,581:124424. doi: 10.1016/j.jhydrol.2019.124424
[10] SKELTON A, LILJEDAHL-CLAESSON L, WÄSTEBY N, et al. Hydrochemical changes before and after earthquakes based on long-term measurements of multiple parameters at two sites in northern Iceland—A review[J]. Journal of Geophysical Research:Solid Earth,2019,124(3):2702 − 2720. doi: 10.1029/2018JB016757
[11] 张澄博, 孔德坊, 张莲花. 成都市长安垃圾填埋场地质特征及其防渗意义[J]. 地质灾害与环境保护,1998,9(1):17 − 21. [ZHANG Chengbo, KONG Defang, ZHANG Lianhua. Geological characteristics and anti seepage process of Chang’an refuse landfill[J]. Journal of Geological Hazards and Environment Preservation,1998,9(1):17 − 21. (in Chinese with English abstract)
[12] WANG C Y, MANGA M. Hydrologic responses to earthquakes and a general metric[J]. Geofluids,2010,10(1/2):206 − 216.
[13] WANG C Y, CHIA Y. Mechanism of water level changes during earthquakes: Near field versus intermediate field[J]. Geophysical Research Letters,2008,35(12):L12402.
[14] WEINGARTEN M, GE S M. Insights into water level response to seismic waves: a 24 year high-fidelity record of global seismicity at Devils Hole[J]. Geophysical Research Letters,2014,41(1):74 − 80. doi: 10.1002/2013GL058418
[15] 周坤根, 李胜乐, 谭适龄, 等. 深井水位固体潮的相位差问题[J]. 地壳形变与地震,1993,13(3):18 − 24. [ZHOU Kungen, LI Shengle, TAN Shiling, et al. On phase shift in observation of tidal fluctuation in a deep well[J]. Crustal Deformation and Earthquake,1993,13(3):18 − 24. (in Chinese with English abstract)
[16] ELKHOURY J E, NIEMEIJER A, BRODSKY E E, et al. Laboratory observations of permeability enhancement by fluid pressure oscillation of in situ fractured rock[J]. Journal of Geophysical Research:Solid Earth,2011,116(B2):B02311.
[17] MANGA M, BERESNEV I, BRODSKY E E, et al. Changes in permeability caused by transient stresses: Field observations, experiments, and mechanisms[J]. Reviews of Geophysics,2012,50(2):RG2004.
[18] 郭子奇, 李胜伟, 王东辉, 等. 浅析四川成都龙泉山城市森林公园主要环境地质问题[J]. 沉积与特提斯地质,2019,39(4):90 − 99. [GUO Ziqi, LI Shengwei, WANG Donghui, et al. Environmental geology of the Longquanshan urban forest park, Chengdu, Sichuan[J]. Sedimentary Geology and Tethyan Geology,2019,39(4):90 − 99. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-3850.2019.04.010
-