华北平原地下水位驱动下的地面沉降现状与研究展望

郭海朋, 李文鹏, 王丽亚, 陈晔, 臧西胜, 王云龙, 朱菊艳, 卞跃跃. 华北平原地下水位驱动下的地面沉降现状与研究展望[J]. 水文地质工程地质, 2021, 48(3): 162-171. doi: 10.16030/j.cnki.issn.1000-3665.202012037
引用本文: 郭海朋, 李文鹏, 王丽亚, 陈晔, 臧西胜, 王云龙, 朱菊艳, 卞跃跃. 华北平原地下水位驱动下的地面沉降现状与研究展望[J]. 水文地质工程地质, 2021, 48(3): 162-171. doi: 10.16030/j.cnki.issn.1000-3665.202012037
GUO Haipeng, LI Wenpeng, WANG Liya, CHEN Ye, ZANG Xisheng, WANG Yunlong, ZHU Juyan, BIAN Yueyue. Present situation and research prospects of the land subsidence driven by groundwater levels in the North China Plain[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 162-171. doi: 10.16030/j.cnki.issn.1000-3665.202012037
Citation: GUO Haipeng, LI Wenpeng, WANG Liya, CHEN Ye, ZANG Xisheng, WANG Yunlong, ZHU Juyan, BIAN Yueyue. Present situation and research prospects of the land subsidence driven by groundwater levels in the North China Plain[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 162-171. doi: 10.16030/j.cnki.issn.1000-3665.202012037

华北平原地下水位驱动下的地面沉降现状与研究展望

  • 基金项目: 国家自然科学基金项目(41877294);中国地质调查局地质调查项目(DD20190679;DD20160235);京津冀平原地下水与地面沉降野外科学观测研究站资助项目
详细信息
    作者简介: 郭海朋(1979-),男,博士,教授级高级工程师,主要从事水文地质、环境地质研究工作。E-mail: guohaipeng@mail.cgs.gov.cn
  • 中图分类号: P642.26

Present situation and research prospects of the land subsidence driven by groundwater levels in the North China Plain

  • 华北平原年地面沉降量大于50 mm的严重区面积超过全国总量的80%,防治形势严峻,需要开展有针对性的研究,为有效防控地面沉降提供科学依据。华北平原建立了较完善的地面沉降监测网络,基本掌握了地面沉降现状及演化规律,但受华北平原含水层系统影响因素复杂与时空变化大等因素制约,对地下水位变化驱动下的土层变形特征及其机制研究迄今仍比较薄弱,限制了对地面沉降发展趋势的科学研判和预测预警。在总结国内外地面沉降研究进展、基于高时空分辨率监测数据分析华北平原地面沉降现状和发展趋势的基础上,提出了地下水位变化影响下的地面沉降研究方向。目前,华北平原地面沉降出现减缓态势,天津、沧州、衡水等重点城市主城区地面沉降得到有效控制,但华北平原尤其是河北平原地面沉降总体上仍然处于较快发展阶段,主要原因是农业灌区地下水开采得不到有效控制。未来华北平原地面沉降研究应聚焦地面沉降机理和预测预警、地下水位回升驱动下的土层变形规律及其对环境的影响、地面沉降区地下水资源属性及地热开发与地面沉降关系等方面。

  • 加载中
  • 图 1  京津冀平原主要浅层和深层地下水漏斗以及累计沉降量较大地区(大于50 cm)分布图

    Figure 1. 

    图 2  京津冀平原地面沉降现状发育程度分区图

    Figure 2. 

    图 3  北京、天津和河北平原地面沉降严重区面积占各省(市)平原区面积比例(2012—2019年)

    Figure 3. 

    图 4  北京平原地面沉降严重区、地下水漏斗面积占平原区总面积比例与平均水位埋深(2012—2019年)

    Figure 4. 

    图 5  沧州市区各压缩层累计变形随时间变化曲线(2019年)

    Figure 5. 

    图 6  地下水位变化驱动下土层变形规律研究思路

    Figure 6. 

    表 1  地面沉降现状发育程度评价标准

    Table 1.  Evaluation standard of the development of land subsidence

    分级
    累计沉降量/mm >1500 500~1500 <500
    沉降速率/(mm·a−1 >50 30~50 <30
    下载: 导出CSV
  • [1]

    HE G F, YAN X X, ZHANG Y, et al. Experimental study on the vertical deformation of soils due to groundwater withdrawal[J]. International Journal of Geomechanics,2020,20(7):04020076. doi: 10.1061/(ASCE)GM.1943-5622.0001709

    [2]

    郭海朋, 白晋斌, 张有全,等. 华北平原典型地段地面沉降演化特征与机理研究[J]. 中国地质,2017,44(6):1115 − 1127. [GUO Haipeng, BAI Jinbin, ZHANG Youquan, et al. The evolution characteristics and mechanism of the land subsidence in typical areas of the North China Plain[J]. Geology in China,2017,44(6):1115 − 1127. (in Chinese with English abstract)

    [3]

    张云, 薛禹群, 吴吉春, 等. 饱和黏性土蠕变变形试验研究[J]. 岩土力学,2011,32(3):672 − 676. [ZHANG Yun, XUE Yuqun, WU Jichun, et al. Experimental study of creep deformation of saturated clay[J]. Rock and Soil Mechanics,2011,32(3):672 − 676. (in Chinese with English abstract)

    [4]

    SIVASITHAMPARAM N, KARSTUNEN M, BONNIER P. Modelling creep behavior of anisotropic soft soils[J]. Computers & Geotechnics,2015,69:46 − 57.

    [5]

    SEXTON B G, MCCABE B A, KARSTUNEN M, et al. Stone column settlement performance in structured anisotropic clays: the influence of creep[J]. Journal of Rock Mechanics and Geotechnical Engineering,2016,8(5):672 − 688. doi: 10.1016/j.jrmge.2016.05.004

    [6]

    ENOMOTO T, KOSEKI J, TATSUOKA F, et al. Creep failure of sands exhibiting various viscosity types and its simulation[J]. Soils & Foundations,2015,55(6):1346 − 1363.

    [7]

    主灿, 张云, 何国峰, 等. 天津滨海新区抽水引起地面沉降现场试验研究[J]. 水文地质工程地质,2018,45(2):159 − 164. [ZHU Can, ZHANG Yun, HE Guofeng, et al. In-situ tests of land subsidence caused by pumping in the Tianjin Binhai New Area[J]. Hydrogeology & Engineering Geology,2018,45(2):159 − 164. (in Chinese with English abstract)

    [8]

    SHEARER T R. A numerical model to calculate land subsidence, applied at Hangu in China[J]. Engineering Geology,1998,49(2):85 − 93. doi: 10.1016/S0013-7952(97)00074-4

    [9]

    AUGUSTESEN A, LIINGAARD M, LADE P V. Evaluation of time-dependent behavior of soils[J]. International Journal of Geomechanics,2004,4(3):137 − 156. doi: 10.1061/(ASCE)1532-3641(2004)4:3(137)

    [10]

    ZHANG Y, XUE Y Q, WU J C, et al. Mechanical modeling of aquifer sands under long-term groundwater withdrawal[J]. Engineering Geology,2012,125:74 − 80. doi: 10.1016/j.enggeo.2011.11.006

    [11]

    WANG F, MIAO L C, LU W H. Sand creep as a factor in land subsidence during groundwater level recovery in the southern Yangtze River delta, China[J]. Bulletin of Engineering Geology and the Environment,2013,72:273 − 283. doi: 10.1007/s10064-013-0474-7

    [12]

    薛禹群, 张云. 长江三角洲南部地面沉降与地裂缝[J]. 华东地质,2016,37(1):1 − 9. [XUE Yuqun, ZHANG Yun. Land subsidence and land fissures in the southern Yangtze River Delta[J]. East China Geology,2016,37(1):1 − 9. (in Chinese with English abstract)

    [13]

    李玉岐, 张啸地, 翁天泉, 等. 排灌水引起砂土层沉降的宏细观试验分析[J]. 上海大学学报(自然科学版),2015,21(6):795 − 802. [LI Yuqi, ZHANG Xiaodi, WENG Tianquan, et al. Macro-meso test analysis of sand subsidence caused by withdrawing and recharging water[J]. Journal of Shanghai University (Natural Science),2015,21(6):795 − 802. (in Chinese with English abstract)

    [14]

    CORAPCIOGLU M Y, BRUTSAERT W. Viscoelastic aquifer model applied to subsidence due to pumping[J]. Water Resources Research,1977,13(3):597 − 604. doi: 10.1029/WR013i003p00597

    [15]

    吴林高, 缪俊发. 抽灌水作用下土层变形及应力-应变本构律的研究[J]. 地球科学: 中国地质大学学报,1995,20(5):581 − 588. [WU Lingao, MIAO Junfa. Soil layer deformation and determination of the constitutive law on the stress-strain of soils under pumping-recharge[J]. Journal of Earth Science: Journal of China University of Geosciences,1995,20(5):581 − 588. (in Chinese with English abstract)

    [16]

    YE S J, XUE Y Q, WU J C, et al. Modeling visco-elastic-plastic deformation of soil with modified Merchant model[J]. Environmental Earth Sciences,2012,66(5):1497 − 1504. doi: 10.1007/s12665-011-1389-x

    [17]

    GAMBOLATI G, TEATINI P. Geomechanics of subsurface water withdrawal and injection[J]. Water Resources Research,2015,51(6):3922 − 3955. doi: 10.1002/2014WR016841

    [18]

    TSAI, M S, HSU K C. Identifying poromechanism and spatially varying parameters of aquifer compaction in Choushui River alluvial fan, Taiwan[J]. Engineering Geology,2018,245:20 − 32. doi: 10.1016/j.enggeo.2018.07.025

    [19]

    RILEY F S. Analysis of borehole extensometer data from central California[J]. Land subsidence,1969,2:423 − 431.

    [20]

    CLEVELAND T G, BRAVO R, ROGERS J R. Storage coefficients and vertical hydraulic conductivities in aquitards using extensometer and hydrograph data[J]. Groundwater,1992,30(5):701 − 708. doi: 10.1111/j.1745-6584.1992.tb01556.x

    [21]

    叶淑君, 薛禹群, 张云, 等. 上海区域地面沉降模型中土层变形特征研究[J]. 岩土工程学报,2005,27(2):140 − 147. [YE Shujun, XUE Yuqun, ZHANG Yun, et al. Study on the deformation characteristics of soil layers in regional land subsidence model of Shanghai[J]. Chinese Journal of Geotechnical Engineering,2005,27(2):140 − 147. (in Chinese with English abstract)

    [22]

    ZHANG Y Q, GONG H L, GU Z Q, et al. Characterization of land subsidence induced by groundwater withdrawals in the plain of Beijing city, China[J]. Hydrogeology Journal,2014,22(2):397 − 409. doi: 10.1007/s10040-013-1069-x

    [23]

    AMIGHPEY M, ARABI S. Studying land subsidence in Yazd province, Iran, by integration of InSAR and levelling measurements[J]. Remote Sensing Applications: Society and Environment,2016,4:1 − 8. doi: 10.1016/j.rsase.2016.04.001

    [24]

    CASTELLAZZI P, MARTEL R, GALLOWAY D L. Assessing Groundwater Depletion and Dynamics Using GRACE and InSAR: Potential and Limitations[J]. Groundwater,2016,54(6):768 − 780. doi: 10.1111/gwat.12453

    [25]

    CHAUSSARD E, MILILLO P, BÜRGMANN R, et al. Remote sensing of ground deformation for monitoring groundwater management practices: Application to the Santa Clara Valley during the 2012–2015 California drought[J]. Journal of Geophysical Research: Solid Earth,2017,122(10):8566 − 8582. doi: 10.1002/2017JB014676

    [26]

    ZHOU H, GÓMEZ-HERNÁNDEZ J J, LI L. Inverse methods in hydrogeology: Evolution and recent trends[J]. Advances in Water Resources,2014,63:22 − 37. doi: 10.1016/j.advwatres.2013.10.014

    [27]

    HOFFMANN J, GALLOWAY D L, ZEBKER H A. Inverse modeling of interbed storage parameters using land subsidence observations, Antelope Valley, California[J]. Water Resources Research,2003,39(2):SBH 5-1 − 5-10.

    [28]

    REEVES J A, KNIGHT R, ZEBKER H A, et al. Estimating temporal changes in hydraulic head using InSAR data in the San Luis Valley, Colorado[J]. Water Resources Research,2014,50(5):4459 − 4473. doi: 10.1002/2013WR014938

    [29]

    BÉJAR-PIZARRO M, MARTÍN P E, HERRERA G, et al. Evaluation of the potential of InSAR time series to study the spatio-temporal evolution of piezometric levels in the Madrid aquifer[J]. Proceedings of the International Association of Hydrological Sciences,2015,372:29 − 32. doi: 10.5194/piahs-372-29-2015

    [30]

    ZHUANG C, ZHOU Z F, ILLMAN W A, et al. Geostatistical inverse modeling for the characterization of aquitard heterogeneity using long-term multi-extensometer data[J]. Journal of Hydrology,2019,578:12024.

    [31]

    ZHUANG C, ZHOU Z F, ILLMAN W A, et al. Parameter estimation of an overconsolidated aquitard subjected to periodic hydraulic head variations within adjacent aquifers[J]. Journal of Hydrology,2020,583:124555.

    [32]

    POETER E P, HILL M C. Documentation of UCODE: A Computer Code for Universal Inverse Modeling[R]. Denver, Colorado: DIANE Publishing. , 1998.

    [33]

    ZHANG M, BURBEY T J, NUNES VDS, et al. A new zonation algorithm with parameter estimation using hydraulic head and subsidence observations[J]. Groundwater,2014,52(4):514 − 524. doi: 10.1111/gwat.12102

    [34]

    ZHANG M, BURBEY T J. Inverse modelling using PS‐InSAR data for improved land subsidence simulation in Las Vegas Valley, Nevada[J]. Hydrological Processes,2016,30:4494 − 4516. doi: 10.1002/hyp.10945

    [35]

    GAMBOLATI G, FREZZE R A. Mathematical simulation of the subsidence of Venice: Theory[J]. Water Resource Research,1973,9(3):721 − 733. doi: 10.1029/WR009i003p00721

    [36]

    于军, 吴吉春, 叶淑君, 等. 苏锡常地区非线性地面沉降耦合模型研究[J]. 水文地质工程地质,2007,34(5):11 − 16. [YU Jun, WU Jichun, YE Shujun, et al. Research on nonlinear coupled modeling of land subsidence in Suzhou, Wuxi and Changzhou areas, China[J]. Hydrogeology & Engineering Geology,2007,34(5):11 − 16. (in Chinese with English abstract)

    [37]

    THOANG T T, GIAO P H. Subsurface characterization and prediction of land subsidence for HCM City, Vietnam[J]. Engineering Geology,2015,199:107 − 124. doi: 10.1016/j.enggeo.2015.10.009

    [38]

    MAHMOUDPOUR M, KHAMEHCHIYAN M, NIKUDEL M R, et al. Numerical simulation and prediction of regional land subsidence caused by groundwater exploitation in the southwest plain of Tehran, Iran[J]. Engineering Geology,2016,201:6 − 28. doi: 10.1016/j.enggeo.2015.12.004

    [39]

    刘蓉, 曹国亮, 赵勇, 等. 地面沉降对含水层参数及给水能力的影响研究[J]. 水文地质工程地质,2019,46(3):47 − 54. [LIU Rong, CAO Guoliang, ZHAO Yong, et al. A study of the influence of land subsidence on hydraulic parameters and water supply capacity[J]. Hydrogeology & Engineering Geology,2019,46(3):47 − 54. (in Chinese with English abstract)

    [40]

    TSAI T L. A coupled one-dimensional viscoelastic-plastic model for aquitard consolidation caused by hydraulic head variations in aquifers[J]. Hydrological Processes,2015,29:4779 − 4793. doi: 10.1002/hyp.10524

    [41]

    ASADI R, ATAIE-ASHTIANI B. Numerical modeling of subsidence in saturated porous media: A mass conservative method[J]. Journal of Hydrology,2016,54:423 − 436.

    [42]

    HERNANDEZ-MARIN M, BURBEY T J. Fault-controlled deformation and stress from pumping-induced groundwater flow[J]. Journal of Hydrology,2012,428 − 429:80 − 93. doi: 10.1016/j.jhydrol.2012.01.025

    [43]

    骆祖江, 王琰, 田小伟, 等. 沧州市地下水开采与地面沉降地裂缝模拟预测[J]. 水利学报,2013,44(2):198 − 204. [LUO Zujiang, WANG Yan, TIAN Xiaowei, et al. Simulating and forecasting of groundwater exploitation, land subsidence and ground fissures in Cangzhou City[J]. Journal of Hydraulic Engineering,2013,44(2):198 − 204. (in Chinese with English abstract)

    [44]

    贾超, 张国荣, 王嘉斌, 等. 地下水开采诱发地面沉降研究及其工程应用:以山东德州地区为例[J]. 地球科学与环境学报,2015,37(4):102 − 110. [JIA Chao, ZHANG Guorong, WANG Jiabin, et al. Study on land subsidence induced by groundwater extraction and its engineering application: Taking Dezhou area of Shandong as an example[J]. Journal of Earth Sciences and Environment,2015,37(4):102 − 110. (in Chinese with English abstract)

    [45]

    CASTELLETTO N, GAMBOLATI G, TEATINI P. A coupled MFE poromechanical model of a large-scale load experiment at the coastland of Venice[J]. Computers & Geosciences,2015,19:17 − 29.

    [46]

    YE S J, LUO Y, WU J C, et al. Three-dimensional numerical modeling of land subsidence in Shanghai, China[J]. Hydrogeology Journal,2016,24(3):695 − 709. doi: 10.1007/s10040-016-1382-2

    [47]

    骆勇, 祝晓彬, 郭飞, 等. 不同方法求解疏排水引起的地面沉降对比研究[J]. 水文地质工程地质,2018,45(5):150 − 157. [LUO Yong, ZHU Xiaobin, GUO Fei, et al. A comparative study of land subsidence caused by drainage with different methods[J]. Hydrogeology & Engineering Geology,2018,45(5):150 − 157. (in Chinese with English abstract)

    [48]

    WANG S J, HSU K C. Dynamic interactions of groundwater flow and soil deformation in randomly heterogeneous porous media[J]. Journal of Hydrology,2013,499:50 − 60. doi: 10.1016/j.jhydrol.2013.06.047

    [49]

    PHAM H T, RÜHAAK W, SCHUSTER V, et al. Fully hydro-mechanical coupled Plug-in (SUB+) in FEFLOW for analysis of land subsidence due to groundwater extraction[J]. SoftwareX,2019,9:15 − 19. doi: 10.1016/j.softx.2018.11.004

    [50]

    GUO H P, JIAO J J, WEEKS E P. Rain-induced subsurface airflow and Lisse effect[J]. Water Resources Research,2008,44:W07409.

    [51]

    GUO H P, JIAO J J. Theoretical study of the impact of tide-induced airflow on hydraulic head in air-confined coastal aquifers[J]. Hydrological Sciences Journal,2010,55(3):435 − 445. doi: 10.1080/02626661003739959

    [52]

    HU L, WINTERFELD P H, FAKCHAROENPHOL P, et al. A novel fully-coupled flow and geomechanics model in enhanced geothermal reservoirs[J]. Journal of Petroleum Science and Engineering,2013,107:1 − 11. doi: 10.1016/j.petrol.2013.04.005

    [53]

    熊小锋, 施小清, 吴剑锋, 等. 弹塑性变形条件下抽水引起的地面沉降三维数值模拟[J]. 水文地质工程地质,2017,44(2):151 − 159. [XIONG Xiaofeng, SHI Xiaoqing, WU Jianfeng, et al. 3D numerical simulation of elasto-plastic land subsidence induced by groundwater pumping[J]. Hydrogeology & Engineering Geology,2017,44(2):151 − 159. (in Chinese with English abstract)

    [54]

    GUO H P, ZHANG Z C, CHENG G M, et al. Groundwater-derived land subsidence in the North China Plain[J]. Environmental Earth Sciences,2015,74(2):1415 − 1427. doi: 10.1007/s12665-015-4131-2

    [55]

    王丽亚, 郭海朋. 连续干旱对北京平原区地下水的影响[J]. 水文地质工程地质,2015,42(1):1 − 6. [WANG Liya, GUO Haipeng. Effects of continuous drought on groundwater in Beijing plain[J]. Hydrogeology & Engineering Geology,2015,42(1):1 − 6. (in Chinese with English abstract)

    [56]

    朱菊艳, 郭海朋, 李文鹏, 等. 华北平原地面沉降与深层地下水开采关系[J]. 南水北调与水利科技,2014,12(3):165 − 169. [ZHU Juyan, GUO Haipeng, LI Wenpeng, et al. Relation between land subsidence and deep groundwater yield in the North China Plain[J]. South-to-North Water Transfers and Water Science & Technology,2014,12(3):165 − 169. (in Chinese with English abstract)

  • 加载中

(6)

(1)

计量
  • 文章访问数:  3836
  • PDF下载数:  137
  • 施引文献:  0
出版历程
收稿日期:  2020-12-16
修回日期:  2021-02-27
刊出日期:  2021-05-15

目录