强震作用下崩塌滚石冲击耗能损伤演化分析

李娟, 何亮, 荀晓慧. 强震作用下崩塌滚石冲击耗能损伤演化分析[J]. 水文地质工程地质, 2022, 49(2): 157-163. doi: 10.16030/j.cnki.issn.1000-3665.202104002
引用本文: 李娟, 何亮, 荀晓慧. 强震作用下崩塌滚石冲击耗能损伤演化分析[J]. 水文地质工程地质, 2022, 49(2): 157-163. doi: 10.16030/j.cnki.issn.1000-3665.202104002
LI Juan, HE Liang, XUN Xiaohui. An evolution analysis of the impact energy damage of collapsed rolling stones under strong earthquakes[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 157-163. doi: 10.16030/j.cnki.issn.1000-3665.202104002
Citation: LI Juan, HE Liang, XUN Xiaohui. An evolution analysis of the impact energy damage of collapsed rolling stones under strong earthquakes[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 157-163. doi: 10.16030/j.cnki.issn.1000-3665.202104002

强震作用下崩塌滚石冲击耗能损伤演化分析

  • 基金项目: 国家重点研发计划项目(2017YFC1501000);四川省教育厅科研计划重点项目(18ZA0045)
详细信息
    作者简介: 李娟(1983-),女,高级工程师,硕士,主要从事地质灾害勘查及设计。E-mail:332535445@qq.com
    通讯作者: 何亮(1994-),男,助理工程师,硕士,主要从事工程项目管理及招标。E-mail:787211279@qq.com
  • 中图分类号: U418.5

An evolution analysis of the impact energy damage of collapsed rolling stones under strong earthquakes

More Information
  • 强震触发崩塌滚石冲击耗能损伤是防护工程设计的重要指标。为探索冲击过程中滚石耗能损伤演化过程,采用热力学定律分析了冲击过程中能量的传递与耗散,通过定义冲击耗能损伤因子DDmax,建立了滚石冲击耗能损伤理论模型与适用模型。结合工程实例,反算极限冲击力对模型进行论证与分析,提出模型的推广应用。结果表明:滚石冲击耗能损伤过程满足热力学第一定律,能量主要贡献于防护工程弹塑性势能的积聚,Dmax受滚石质量、弹性模量、抛射初速度、最大冲击力、有效作用面积等的影响;最大冲击力持续增加,极限冲击耗能损伤因子增大,达到线性函数与抛物线函数图像交点C(1031 kN,0.9965)时曲线出现拐点。模型推广得到广义范围下的冲击耗能损伤演化函数曲线,冲击耗能损伤全过程在损伤响应、损伤线性、损伤渐进三个阶段的临界位置出现2次损伤拐点;随滚石质量增加,最大冲击力增大,极限冲击耗能损伤因子曲线先呈抛物线减小,再呈线性增加,最后呈抛物线逐渐增加直到无限趋近于1。从能量角度定量分析其损伤本质,对探究滚石运动过程能量耗散机制及防护工程的设计具有重要意义。

  • 加载中
  • 图 1  崩塌滚石冲击耗能演化过程

    Figure 1. 

    图 2  $ f\left(x\right) $函数图像

    Figure 2. 

    图 3  滚石质量与冲击力关系图

    Figure 3. 

    图 4  最大冲击力与Dmax关系图

    Figure 4. 

    图 5  滚石冲击耗能损伤演化曲线

    Figure 5. 

    表 1  岩石变形破坏各部分能量平均比值

    Table 1.  The average energy ratio of each part of rock deformation and failure

    岩性弹性势能/J塑性势能/ J比值
    大理岩(硬岩)0.08420.04100.487
    砂岩(软岩)0.04100.03950.963
    下载: 导出CSV

    表 2  崩塌滚石参数统计表

    Table 2.  Statistics of parameters of collapsed rocks

    编号质量/kg初始高度/m有效作用面积/m2
    G010.206×103100.162
    G020.418×103100.206
    G030.603×103100.312
    G040.820×103100.396
    G051.018×103100.468
    下载: 导出CSV
  • [1]

    WANG X, XIA Y X, ZHOU T Y. Theoretical analysis of rockfall impacts on the soil cushion layer of protective structures[J]. Advances in Civil Engineering,2018,2018:1 − 18.

    [2]

    王林峰, 刘丽, 唐芬, 等. 基于落石棚洞冲击试验的落石冲击力研究[J]. 防灾减灾工程学报,2018,38(6):973 − 979. [WANG Linfeng, LIU Li, TANG Fen, et al. Research on impact force of falling rocks based on impact test of rock shed cave[J]. Journal of Disaster Prevention and Mitigation Engineering,2018,38(6):973 − 979. (in Chinese with English abstract)

    [3]

    吴建利, 胡卸文, 梅雪峰, 等. 落石冲击混凝土板与缓冲层组合结构的动力响应[J]. 水文地质工程地质,2021,48(1):78 − 87. [WU Jianli, HU Xiewen, MEI Xuefeng, et al. Dynamic response of RC slab with cushion layer composed ofsandy soil to rockfall impact[J]. Hydrogeology & Engineering Geology,2021,48(1):78 − 87. (in Chinese with English abstract)

    [4]

    CAVIEZEL A, DEMMEL S E, RINGENBACH A, et al. Reconstruction of four-dimensional rockfall trajectories using remote sensing and rock-based accelerometers and gyroscopes[J]. Earth Surface Dynamics,2019,7(1):199 − 210. doi: 10.5194/esurf-7-199-2019

    [5]

    DORREN L K A, BERGER F. Stem breakage of trees and energy dissipation during rockfall impacts[J]. Tree Physiology,2006,26(1):63 − 71. doi: 10.1093/treephys/26.1.63

    [6]

    ZHANG Y L, LIU Z B, SHI C, et al. Three-dimensional reconstruction of block shape irregularity and its effects on block impacts using an energy-based approach[J]. Rock Mechanics and Rock Engineering,2018,51(4):1173 − 1191. doi: 10.1007/s00603-017-1385-x

    [7]

    ZHU C, WANG D S, XIA X, et al. The effects of gravel cushion particle size and thickness on the coefficient of restitution in rockfall impacts[J]. Natural Hazards and Earth System Sciences,2018,18(6):1811 − 1823. doi: 10.5194/nhess-18-1811-2018

    [8]

    杨璐, 李士民, 吴智敏, 等. 滚石对棚洞结构的冲击动力分析[J]. 交通运输工程学报,2012,12(1):25 − 30. [YANG Lu, LI Shimin, WU Zhimin, et al. Dynamic analysis of rock-fall impact on shed tunnel structure[J]. Journal of Traffic and Transportation Engineering,2012,12(1):25 − 30. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1637.2012.01.005

    [9]

    王星, 周天跃, 师江涛, 等. 基于自由落体的落石冲击土层的理论及LS-DYNA模拟研究[J]. 北京交通大学学报,2019,43(4):9 − 17. [WANG Xing, ZHOU Tianyue, SHI Jiangtao, et al. Theoretical and LS-DYNA simulation study of based on the theory of free-fall rockfall’s impact on soil layer[J]. Journal of Beijing Jiaotong University,2019,43(4):9 − 17. (in Chinese with English abstract) doi: 10.11860/j.issn.1673-0291.20190015

    [10]

    裴向军, 黄润秋, 裴钻, 等. 强震触发崩塌滚石运动特征研究[J]. 工程地质学报,2011,19(4):498 − 504. [PEI Xiangjun, HUANG Runqiu, PEI Zuan, et al. Analysis on the movement characteristics of rolling rock on slope caused by intensive earthquake[J]. Journal of Engineering Geology,2011,19(4):498 − 504. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2011.04.010

    [11]

    袁博, 祝介旺. 滚石冲击下棚洞破坏动力响应分析及改进对策—以川藏公路(安久拉山南麓)门式棚洞为例[J]. 水文地质工程地质,2019,46(6):57 − 66. [YUAN Bo, ZHU Jiewang. Dynamic response analyses and improvement countermeasures of shed-tunnel destruction under rolling stone impact: A case study of the shed-tunnel in the southern foot of the Anjiula Mountain on the Sichuan-Tibet Highway[J]. Hydrogeology & Engineering Geology,2019,46(6):57 − 66. (in Chinese with English abstract)

    [12]

    崔圣华, 裴向军, 黄润秋. 直线型斜坡滚石运动速度特征研究[J]. 工程地质学报,2013,21(6):912 − 919. [CUI Shenghua, PEI Xiangjun, HUANG Runqiu. Analysis on velocity characteristics of rock-fall on slope[J]. Journal of Engineering Geology,2013,21(6):912 − 919. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2013.06.020

    [13]

    程强, 苏生瑞. 汶川地震崩塌滚石坡面运动特征[J]. 岩土力学,2014,35(3):772 − 776. [CHENG Qiang, SU Shengrui. Movement characteristics of collapsed stones on slopes induced by Wenchuan earthquake[J]. Rock and Soil Mechanics,2014,35(3):772 − 776. (in Chinese with English abstract)

    [14]

    吴建利, 胡卸文, 梅雪峰, 等. 高位落石作用下不同缓冲层与钢筋混凝土板组合结构动力响应[J]. 水文地质工程地质,2020,47(4):114 − 122. [WU Jianli, HU Xiewen, MEI Xuefeng, et al. Dynamic response of RC plate with different cushion layers under the high-level rockfall impact[J]. Hydrogeology & Engineering Geology,2020,47(4):114 − 122. (in Chinese with English abstract)

    [15]

    谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报,2005,24(17):3003 − 3010. [XIE Heping, JU Yang, LI Liyun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(17):3003 − 3010. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2005.17.001

    [16]

    秦允豪. 热学[M]. 北京: 高等教育出版社, 2011: 189- 304.

    QIN Yunhao. Hot learning[M]. Beijing: Higher Education Press, 2011: 189 − 304. (in Chinese)

    [17]

    杨桂通. 弹塑性力学引论[M]. 2版. 北京: 清华大学出版社, 2013: 40 − 94.

    YANG Guitong. Introduction to elasticity and plasticity[M]. 2nd ed. Beijing: Tsinghua University Press, 2013: 40 − 94.(in Chinese)

    [18]

    腾保华, 吴明和. 大学物理学(上册)[M]. 2版. 北京: 科学出版社, 2017: 3 − 125.

    TENG Baohua, WU Minghe. University physics (Volume up)[M]. 2nd ed. Beijing: Science Press, 2017: 3 − 125. (in Chinese)

    [19]

    何亮, 魏玉峰, 潘远阳, 等. 基于能量耗散机制的粗粒土圆度损伤特性分析[J]. 水文地质工程地质,2019,46(5):120 − 126. [HE Liang, WEI Yufeng, PAN Yuanyang, et al. Analyses of roundness damage characteristics of coarse-grained soil based on energy dissipation mechanism[J]. Hydrogeology & Engineering Geology,2019,46(5):120 − 126. (in Chinese with English abstract)

    [20]

    赵忠虎, 谢和平. 岩石变形破坏过程中的能量传递和耗散研究[J]. 四川大学学报(工程科学版),2008,40(2):26 − 31. [ZHAO Zhonghu, XIE Heping. Energy transfer and energy dissipation in rock deformation and fracture[J]. Journal of Sichuan University (Engineering Science Edition),2008,40(2):26 − 31. (in Chinese with English abstract)

    [21]

    程强, 胡朝旭, 杨绪波. 九寨沟地震区公路沿线地质灾害发育规律及防治对策[J]. 中国地质灾害与防治学报,2018,29(4):114 − 120. [CHENG Qiang, HU Chaoxu, YANG Xubo. Development law and prevention countermeasures of geological hazards along the highway in Jiuzhaigou earthquake area[J]. The Chinese Journal of Geological Hazard and Control,2018,29(4):114 − 120. (in Chinese with English abstract)

    [22]

    何宇航, 裴向军, 梁靖, 等. 基于Rockfall的危岩体危险范围预测及风险评价—以九寨沟景区悬沟危岩体为例[J]. 中国地质灾害与防治学报,2020,31(4):24 − 33. [HE Yuhang, PEI Xiangjun, LIANG Jing, et al. Risk assessment and range prediction of dangerous rock massbased on rockfall: A case study of the Xuangou collapse[J]. The Chinese Journal of Geological Hazard and Control,2020,31(4):24 − 33. (in Chinese with English abstract)

    [23]

    黄小福, 张迎宾, 赵兴权, 等. 地震条件下危岩崩塌运动特性的初步探讨[J]. 岩土力学,2017,38(2):583 − 592. [HUANG Xiaofu, ZHANG Yingbin, ZHAO Xingquan, et al. A preliminary study of kinetic characteristic of rock-fall under seismic loading[J]. Rock and Soil Mechanics,2017,38(2):583 − 592. (in Chinese with English abstract)

    [24]

    陈驰, 刘成清, 陈林雅, 等. 落石作用于钢筋混凝土棚洞的冲击力研究[J]. 公路交通科技,2015,32(1):102 − 109. [CHEN Chi, LIU Chengqing, CHEN Linya, et al. Study on impact force of rock-fall onto rock shed tunnel[J]. Journal of Highway and Transportation Research and Development,2015,32(1):102 − 109. (in Chinese with English abstract) doi: 10.3969/j.issn.1002-0268.2015.01.017

  • 加载中

(5)

(2)

计量
  • 文章访问数:  1268
  • PDF下载数:  107
  • 施引文献:  0
出版历程
收稿日期:  2021-04-02
修回日期:  2021-06-12
刊出日期:  2022-03-15

目录