落石法向恢复系数的多因素联合影响研究

姬中民, 张晟, 伍法权, 牛庆合, 王可意. 落石法向恢复系数的多因素联合影响研究[J]. 水文地质工程地质, 2022, 49(2): 164-173. doi: 10.16030/j.cnki.issn.1000-3665.202105050
引用本文: 姬中民, 张晟, 伍法权, 牛庆合, 王可意. 落石法向恢复系数的多因素联合影响研究[J]. 水文地质工程地质, 2022, 49(2): 164-173. doi: 10.16030/j.cnki.issn.1000-3665.202105050
JI Zhongmin, ZHANG Sheng, WU Faquan, NIU Qinghe, WANG Keyi. Research on the joint influence of multiple factors on the normal coefficient of restitution of rockfall[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 164-173. doi: 10.16030/j.cnki.issn.1000-3665.202105050
Citation: JI Zhongmin, ZHANG Sheng, WU Faquan, NIU Qinghe, WANG Keyi. Research on the joint influence of multiple factors on the normal coefficient of restitution of rockfall[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 164-173. doi: 10.16030/j.cnki.issn.1000-3665.202105050

落石法向恢复系数的多因素联合影响研究

  • 基金项目: 河南省自然科学基金项目(222300420366);江西省教育厅科学技术研究项目(GJJ191347)
详细信息
    作者简介: 姬中民(1988-),男,博士,讲师,主要从事落石灾害预测及防治研究。E-mail:gang880129@126.com
    通讯作者: 王可意(1988-),女,博士,讲师,主要从事地质灾害防护研究。E-mail:814207371@qq.com
  • 中图分类号: P642.2

Research on the joint influence of multiple factors on the normal coefficient of restitution of rockfall

More Information
  • 法向恢复系数(Rn)作为落石灾害预测及分析中最为关键的输入参数,由于其受控因素较多,如何确定准确合理的Rn值仍然是一个难题。为探究多因素对Rn的联合影响规律及机理,首次采用响应曲面−中心复合试验设计方法对Rn的7因素联合影响展开测试。通过对试验结果进行回归和方差分析,遴选的7个因素对Rn影响均较显著,显著程度依次为碰撞角(θ)>试块硬度(H1)>转速(ω)>形状因子(η)>入射速度(V)>坡面硬度(H2)>尺寸(d)。许多交互参数对Rn亦表现出了显著影响,依次为d−θ > H1d > V−η > H1−ω > d−η > η−ω > H1−η。对于单因素参数,Rnd、V、η、θ减小和H1、H2ω增大,呈增大趋势;对于交互参数,dωRn影响较弱仅表现在H1较小时,随H1增大,影响逐渐增强;ηH1较小时对Rn影响较显著,随H1增大,影响明显减弱;η较小时,RnVd减小显著增大,η较大时,这种影响不显著;θ较小时,Rnθ增大减小较快,θ较大时,减小趋势放缓;相比较小η值试块,较大η值试块的ωRn影响更为显著。这些获得的结论可为落石Rn计算模型的构建提供重要参考,进而为落石灾害的精准预测及防护提供依据。

  • 加载中
  • 图 1  碰撞前试块绕XYZ轴旋转示意图

    Figure 1. 

    图 2  落石碰撞测试装置

    Figure 2. 

    图 3  试验所采用的试块

    Figure 3. 

    图 4  参数对Rn的主要影响

    Figure 4. 

    图 5  显著性交互参数对Rn影响的三维曲面图

    Figure 5. 

    图 6  易于获得极端高Rn值的条件

    Figure 6. 

    表 1  中心复合试验设计中的变量水平

    Table 1.  Variable levels in the central composite experimental design

    编码因子变量实际因子变量实际水平
    低轴点低水平中心点高水平高轴点
    −α (−1.576)−101+α (+1.576)
    A坡面硬度(H247.6654657682.33
    B试块硬度(H147.6654657682.33
    C入射速度(V)/(m· s−12.92 3.5 4.5 5.56.08
    D尺寸/等效直径(d)/cm3.42 4 5 66.58
    E形状因子(η1.15 1.35 1.70 2.052.25
    F碰撞角(θ)/(°)4.1818426679.82
    G初始转速(ω)/(转·min−142 100 200 300358
    下载: 导出CSV

    表 2  试验所用试块及坡面板特征参数

    Table 2.  Characteristic parameters of the blocks and slopes used in the experiment

    岩石类型施密特硬度形状尺寸η
    特征长度值/mm
    大理岩54长方体长/宽/高53.9/24.9/24.92.05
    大理岩54长方体长/宽/高80.85/37.35/37.352.05
    大理岩54近似立方体长/宽/高52.58/46.35/46.351.35
    大理岩54近似立方体长/宽/高35.05/30.9/30.91.35
    花岗岩-176长方体长/宽/高53.9/24.9/24.92.05
    花岗岩-176长方体长/宽/高80.85/37.35/37.352.05
    花岗岩-176近似立方体长/宽/高52.58/46.35/46.351.35
    花岗岩-176近似立方体长/宽/高35.05/30.9/30.91.35
    灰岩65正四面体边长821.70
    灰岩65正四面体边长56.281.70
    灰岩65正四面体边长108.061.70
    灰岩65正二十面体边长31.071.15
    灰岩65三角板底边/高/厚度57.1/70.6/32.652.25
    花岗岩-282正四面体边长821.70
    砂岩48正四面体边长821.70
    下载: 导出CSV

    表 3  Rn值的响应曲面二次模型方差分析结果

    Table 3.  Analyses of variance (ANOVA) for the response surface quadratic model of the Rn values

    方差来源SSdfMSFP
    Prob > F
    模型
    系数
    截距0.27
    A0.02510.02521.18< 0.00010.014
    B0.3610.36313.27< 0.00010.052
    C0.02610.02622.55< 0.0001−0.014
    D0.02310.02319.39< 0.0001−0.013
    E0.04410.04437.9< 0.0001−0.018
    F1.0111.01871.14< 0.0001−0.087
    G0.2810.28242.17< 0.00010.046
    BD0.009910.00998.510.00420.0088
    BE0.004610.00463.960.04860.006
    BF0.003410.00342.910.0902−0.0051
    BG0.006810.00685.840.0170.0073
    CE0.008610.00867.360.00760.0082
    DE0.006210.00625.30.02280.0069
    DF0.01210.0129.930.0020.0095
    DG0.002410.00242.110.14910.0044
    EF0.002610.00262.270.13470.0045
    EG0.004910.00494.230.04180.0062
    C20.02710.02723.29< 0.00010.038
    F20.04610.04639.29< 0.00010.05
    Model1.98190.189.5< 0.0001
    Lack of Fit0.141230.00120.990.5649
    R2=0.928      
    下载: 导出CSV
  • [1]

    何思明, 吴永, 李新坡. 滚石冲击碰撞恢复系数研究[J]. 岩土力学,2009,30(3):623 − 627. [HE Siming, WU Yong, LI Xinpo. Research on restitution coefficient of rock fall[J]. Rock and Soil Mechanics,2009,30(3):623 − 627. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2009.03.008

    [2]

    章广成, 向欣, 唐辉明. 落石碰撞恢复系数的现场试验与数值计算[J]. 岩石力学与工程学报,2011,30(6):1266 − 1273. [ZHANG Guangcheng, XIANG Xin, TANG Huiming. Field test and numerical calculation of restitution coefficient of rockfall collision[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(6):1266 − 1273. (in Chinese with English abstract)

    [3]

    姬中民, 唐一举, 伍法权, 等. 落石形状和尺寸对恢复系数影响的室内试验研究[J]. 岩土力学,2021,42(3):665 − 672. [JI Zhongmin, TANG Yiju, WU Faquan, et al. Laboratory investigation of the effect of rockfall shape and size on coefficient of restitution[J]. Rock and Soil Mechanics,2021,42(3):665 − 672. (in Chinese with English abstract)

    [4]

    吴建利, 胡卸文, 梅雪峰, 等. 落石冲击混凝土板与缓冲层组合结构的动力响应[J]. 水文地质工程地质,2021,48(1):78 − 87. [WU Jianli, HU Xiewen, MEI Xuefeng, et al. Dynamic response of RC slab with cushion layer composed of sandy soil to rockfall impact[J]. Hydrogeology & Engineering Geology,2021,48(1):78 − 87. (in Chinese with English abstract)

    [5]

    吴建利, 胡卸文, 梅雪峰, 等. 高位落石作用下不同缓冲层与钢筋混凝土板组合结构动力响应[J]. 水文地质工程地质,2020,47(4):114 − 122. [WU Jianli, HU Xiewen, MEI Xuefeng, et al. Dynamic response of RC plate with different cushion layers under the high-level rockfall impact[J]. Hydrogeology & Engineering Geology,2020,47(4):114 − 122. (in Chinese with English abstract)

    [6]

    沈均, 何思明, 吴永. 滚石灾害研究现状及发展趋势[J]. 灾害学,2008,23(4):122 − 125. [SHEN Jun, HE Siming, WU Yong. Present research status and development trend of rockfall hazards[J]. Journal of Catastrophology,2008,23(4):122 − 125. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-811X.2008.04.025

    [7]

    YAN P, ZHANG J H, KONG X Z, et al. Numerical simulation of rockfall trajectory with consideration of arbitrary shapes of falling rocks and terrain[J]. Computers and Geotechnics,2020,122:103511. doi: 10.1016/j.compgeo.2020.103511

    [8]

    AGLIARDI F, CROSTA G B. High resolution three-dimensional numerical modelling of rockfalls[J]. International Journal of Rock Mechanics and Mining Sciences,2003,40(4):455 − 471. doi: 10.1016/S1365-1609(03)00021-2

    [9]

    LAN H X, MARTIN C D, LIM C H. RockFall analyst: a GIS extension for three dimensional and spatially distributed rockfall hazard modeling[J]. Computers & Geosciences,2007,33(2):262 − 279.

    [10]

    STEVENS W. RockFall: a tool for probabilistic analysis, design of remedial measures and prediction of rock falls[D].Toronto: University of Toronto, 1998.

    [11]

    DORREN L K A. Rockyfor3D (v5.2) revealed-transparent description of the complete 3D rockfall model[EB/OL]. (2015-12-16)[2021-04-20]. http://www.ecorisq.org/

    [12]

    LI L P, LAN H X. Probabilistic modeling of rockfall trajectories: a review[J]. Bulletin of Engineering Geology and the Environment,2015,74(4):1163 − 1176. doi: 10.1007/s10064-015-0718-9

    [13]

    叶四桥, 巩尚卿. 落石碰撞法向恢复系数的模型试验研究[J]. 中国铁道科学,2015,36(4):13 − 19. [YE Siqiao, GONG Shangqing. Research on normal restitution coefficient of rockfall collision by model tests[J]. China Railway Science,2015,36(4):13 − 19. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-4632.2015.04.03

    [14]

    黄润秋, 刘卫华. 基于正交设计的滚石运动特征现场试验研究[J]. 岩石力学与工程学报,2009,28(5):882 − 891. [HUANG Runqiu, LIU Weihua. In-situ test study of characteristics of rolling rock blocks based on orthogonal design[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(5):882 − 891. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2009.05.003

    [15]

    叶四桥, 巩尚卿, 王林峰, 等. 落石碰撞切向恢复系数的取值研究[J]. 中国铁道科学,2018,39(1):8 − 15. [YE Siqiao, GONG Shangqing, WANG Linfeng, et al. Research on value of tangential restitution coefficient for rockfall collision[J]. China Railway Science,2018,39(1):8 − 15. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-4632.2018.01.02

    [16]

    GIANI G P, GIACOMINI A, MIGLIAZZA M, et al. Experimental and theoretical studies to improve rock fall analysis and protection work design[J]. Rock Mechanics and Rock Engineering,2004,37(5):369 − 389. doi: 10.1007/s00603-004-0027-2

    [17]

    SPADARI M, GIACOMINI A, BUZZI O, et al. In situ rockfall testing in New South Wales, Australia[J]. International Journal of Rock Mechanics and Mining Sciences,2012,49:84 − 93. doi: 10.1016/j.ijrmms.2011.11.013

    [18]

    FERRARI F, GIANI G P, APUANI T. Why can rockfall normal restitution coefficient be higher than one?[J]. Rend Online Soc Geol It, 2013, 24: 122 − 124.

    [19]

    WYLLIE D C. Calibration of rock fall modeling parameters[J]. International Journal of Rock Mechanics and Mining Sciences,2014,67:170 − 180. doi: 10.1016/j.ijrmms.2013.10.002

    [20]

    PFEIFFER T, BOWEN T. Computer simulation of rockfalls[J]. Environmental & Engineering Geoscience,1989,26(1):135 − 146.

    [21]

    ASTERIOU P, TSIAMBAOS G. Empirical model for predicting rockfall trajectory direction[J]. Rock Mechanics and Rock Engineering,2016,49(3):927 − 941. doi: 10.1007/s00603-015-0798-7

    [22]

    ASTERIOU P, TSIAMBAOS G. Effect of impact velocity, block mass and hardness on the coefficients of restitution for rockfall analysis[J]. International Journal of Rock Mechanics and Mining Sciences,2018,106:41 − 50. doi: 10.1016/j.ijrmms.2018.04.001

    [23]

    ASTERIOU P, SAROGLOU H, TSIAMBAOS G. Geotechnical and kinematic parameters affecting the coefficients of restitution for rock fall analysis[J]. International Journal of Rock Mechanics and Mining Sciences,2012,54:103 − 113. doi: 10.1016/j.ijrmms.2012.05.029

    [24]

    JI Z M, CHEN Z J, NIU Q H, et al. Laboratory study on the influencing factors and their control for the coefficient of restitution during rockfall impacts[J]. Landslides,2019,16(10):1939 − 1963. doi: 10.1007/s10346-019-01183-x

    [25]

    GIACOMINI A, THOENI K, LAMBERT C, et al. Experimental study on rockfall drapery systems for open pit highwalls[J]. International Journal of Rock Mechanics and Mining Sciences,2012,56:171 − 181. doi: 10.1016/j.ijrmms.2012.07.030

    [26]

    ANSARI M K, AHMAD M, SINGH R, et al. Correlation between Schmidt hardness and coefficient of restitution of rocks[J]. Journal of African Earth Sciences,2015,104:1 − 5. doi: 10.1016/j.jafrearsci.2015.01.005

    [27]

    CHAU K T, WONG R H C, LEE F. Rockfall problems in Hong Kong and some new experimental results for coefficients of restitution[J]. International Journal of Rock Mechanics and Mining Sciences,1998,35(4/5):662 − 663.

    [28]

    TURRIN S, HANSS M, SELVADURAI A P S. An approach to uncertainty analysis of rockfall Simulation[J]. Computer Modeling in Engineering & Sciences,2009,52(3):237 − 258.

    [29]

    BUZZI O, GIACOMINI A, SPADARI M. Laboratory investigation on high values of restitution coefficients[J]. Rock Mechanics and Rock Engineering,2012,45(1):35 − 43.

    [30]

    柳万里, 晏鄂川, 魏鹏飞, 等. 落石运动特征试验及影响因素敏感性分析[J]. 山地学报,2021,39(1):47 − 58. [LIU Wanli, YAN Echuan, WEI Pengfei, et al. Experimental study on rockfall and sensitivity analysis of influencing factors[J]. Mountain Research,2021,39(1):47 − 58. (in Chinese with English abstract)

    [31]

    SAKKAS V A, ISLAM M A, STALIKAS C, et al. Photocatalytic degradation using design of experiments: A review and example of the Congo red degradation[J]. Journal of Hazardous Materials,2010,175(1/2/3):33 − 44.

    [32]

    FITYUS S G, GIACOMINI A, BUZZI O. The significance of geology for the morphology of potentially unstable rocks[J]. Engineering Geology,2013,162:43 − 52. doi: 10.1016/j.enggeo.2013.05.007

  • 加载中

(6)

(3)

计量
  • 文章访问数:  2103
  • PDF下载数:  71
  • 施引文献:  0
出版历程
收稿日期:  2021-05-22
修回日期:  2021-08-06
刊出日期:  2022-03-15

目录