基于逻辑回归–信息量的川藏交通廊道滑坡易发性评价

杜国梁, 杨志华, 袁颖, 任三绍, 任涛. 基于逻辑回归–信息量的川藏交通廊道滑坡易发性评价[J]. 水文地质工程地质, 2021, 48(5): 102-111. doi: 10.16030/j.cnki.issn.1000-3665.202104009
引用本文: 杜国梁, 杨志华, 袁颖, 任三绍, 任涛. 基于逻辑回归–信息量的川藏交通廊道滑坡易发性评价[J]. 水文地质工程地质, 2021, 48(5): 102-111. doi: 10.16030/j.cnki.issn.1000-3665.202104009
DU Guoliang, YANG Zhihua, YUAN Ying, REN Sanshao, REN Tao. Landslide susceptibility mapping in the Sichuan-Tibet traffic corridor using logistic regression- information value method[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 102-111. doi: 10.16030/j.cnki.issn.1000-3665.202104009
Citation: DU Guoliang, YANG Zhihua, YUAN Ying, REN Sanshao, REN Tao. Landslide susceptibility mapping in the Sichuan-Tibet traffic corridor using logistic regression- information value method[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 102-111. doi: 10.16030/j.cnki.issn.1000-3665.202104009

基于逻辑回归–信息量的川藏交通廊道滑坡易发性评价

  • 基金项目: 国家自然科学基金项目(41807231;41941017;41731287);中国地质调查局地质调查项目(20190505)
详细信息
    作者简介: 杜国梁(1989-),男,博士,副教授,主要从事工程地质与地质灾害研究工作。E-mail:756591925@qq.com
  • 中图分类号: P642.22

Landslide susceptibility mapping in the Sichuan-Tibet traffic corridor using logistic regression- information value method

  • 川藏交通廊道位于青藏高原中东部,是世界上隆升和地貌演化最快的区域之一。在内外动力耦合作用下,区内滑坡灾害极其发育,严重制约着公路、铁路和水电工程的规划建设。在区域地质资料收集和整理的基础上,选取岩性、坡度、坡向、坡形、地形起伏度、地形粗糙度、断裂密度和河流距离8个因素为评价因子,结合传统信息量和逻辑回归模型的优势,采用逻辑回归–信息量模型对研究区滑坡进行易发性评价。通过对评价因子的多重共线性和显著性检验,得到评价因子不存在多重共线性且均对滑坡发生具有显著影响。采用ROC曲线对评价结果进行检验,其AUC值为0.81,表明评价模型能很好地预测滑坡的发生。易发性评价结果表明:研究区高易发区主要集中龙门山断裂带、金沙江断裂带、澜沧江断裂带、怒江断裂带、边坝–洛隆断裂带等大型活动断裂带控制区,以及区内坡度陡峭、地形起伏度大的大型河流深切河谷的两岸;中易发区在区内分布广泛,主要分布在岸坡较陡、地形起伏度中等的大型河流支流的两岸。研究结果有利于加深对川藏交通廊道滑坡发育分布的认识,也可为研究区的工程规划建设和防灾减灾提供科学依据。

  • 加载中
  • 图 1  研究区地质背景图

    Figure 1. 

    图 2  研究区岩性分布图

    Figure 2. 

    图 3  研究区坡度分级图

    Figure 3. 

    图 4  研究区坡向分布图

    Figure 4. 

    图 5  研究区地形起伏度分布图

    Figure 5. 

    图 6  研究区斜坡坡形分布图

    Figure 6. 

    图 7  研究区地表粗糙度分布图

    Figure 7. 

    图 8  研究区断裂密度分布图

    Figure 8. 

    图 9  研究区河流距离分布图

    Figure 9. 

    图 10  川藏交通廊道滑坡易发性评价图

    Figure 10. 

    图 11  逻辑回归-信息量模型的ROC曲线

    Figure 11. 

    表 1  信息量统计表

    Table 1.  Information value of landslide contributing factors

    因子分级灾害点数量分级面积/km2信息量
    岩性894149156.89−0.224
    1131144023.75 0.046
    1298147800.05 0.158
    1311159143.54 0.094
    18642359.45−0.535
    坡度<10°671148031.37−0.504
    10°~20°940136206.86−0.083
    20°~30°1437168805.57 0.127
    30°~40°1463142399.33 0.315
    40°~50°26538300.46−0.081
    >50°448740.09−0.399
    坡向平面03054.36
    55886886.59−0.155
    东北58683958.15−0.072
    61874825.46 0.096
    东南73577610.05 0.233
    73084843.91 0.137
    西南59081023.66−0.030
    西48872673.02−0.111
    西北51577608.48−0.123
    地形起伏度/m<50542141756.94−0.674
    50~100824146337.83−0.287
    100~1501539172594.47 0.173
    150~2001601122119.25 0.558
    200~25024143446.47−0.302
    >2507316228.72−0.511
    坡形凹形坡2183301050.94−0.034
    平面坡3917135.93−1.193
    凸形坡2598324296.81 0.066
    地表粗糙度<1.12719357464.68 0.014
    1.1~1.21137159157.91−0.049
    1.2~1.356376548.35−0.020
    1.3~1.421626711.40 0.075
    1.4~1.58910704.42 0.103
    >1.59611896.92 0.073
    断裂密度/(m·km−2<51798275959.68−0.141
    5~10930167439.12−0.300
    10~1577499442.21 0.037
    15~2070357267.24 0.493
    20~2540230967.41 0.548
    >2521311408.02 0.912
    河流距离/m<2004219264.62 1.801
    200~4003429102.11 1.611
    400~6002238891.23 1.207
    600~8001588698.89 0.884
    800~10001548549.94 0.876
    >10003522597976.89−0.242
    下载: 导出CSV

    表 2  评价因子共线性诊断

    Table 2.  Multi-collinearity analysis of contributing factors

    因子TOLVIF
    岩性0.9531.049
    坡度0.4182.394
    坡向0.9931.007
    地形起伏度0.4992.005
    坡形0.9211.086
    地表粗糙度0.7321.367
    断裂密度0.9941.006
    河流距离0.9951.005
    下载: 导出CSV

    表 3  模型相关参数

    Table 3.  Relevant parameters of the model

    因子B标准误差WaldSig.Exp(B
    岩性1.1150.087163.8851.60E-373.051
    坡度2.0570.098442.2343.53E-987.824
    坡向0.7370.070112.3093.06E-262.089
    地形起伏度1.1990.097154.1252.17E-353.317
    坡形1.3810.17959.3051.35E-143.978
    地表粗糙度1.4330.139106.5285.65E-254.193
    断裂密度1.6200.094296.7851.65E-665.054
    河流距离1.0960.072228.8621.06E-512.991
    常量−4.9080.200601.5477.72E-1330.007
    下载: 导出CSV

    表 4  不同易发区滑坡统计结果

    Table 4.  Relevant parameters of the model

    分级面积/km2滑坡数量/
    滑坡密度/
    (个·km−2
    非滑坡数量/
    非滑坡密度/
    (个·km−2
    83464.6912470.01491470.002
    204267.9616850.00827790.004
    166022.2711530.006911390.007
    极低188728.767350.003927550.015
    下载: 导出CSV
  • [1]

    彭建兵, 马润勇, 卢全中, 等. 青藏高原隆升的地质灾害效应[J]. 地球科学进展,2004,19(3):457 − 466. [PENG Jianbing, MA Runyong, LU Quanzhong, et al. Geological hazards effects of uplift of Qinghai-Tibet plateau[J]. Advance in Earth Sciences,2004,19(3):457 − 466. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-8166.2004.03.018

    [2]

    彭建兵, 崔鹏, 庄建琦. 川藏铁路对工程地质提出的挑战[J]. 岩石力学与工程学报,2020,39(12):2377 − 2389. [PENG Jianbing, CUI Peng, ZHUANG Jianqi. Challenges to engineering geology of Sichuan-Tibet Railway[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(12):2377 − 2389. (in Chinese with English abstract)

    [3]

    张永双, 郭长宝, 姚鑫, 等. 青藏高原东缘活动断裂地质灾害效应研究[J]. 地球学报,2016,37(3):277 − 286. [ZHANG Yongshuang, GUO Changbao, YAO Xin, et al. Research on the geohazard effect of active fault on the eastern margin of the Tibetan Plateau[J]. Acta Geoscientica Sinica,2016,37(3):277 − 286. (in Chinese with English abstract) doi: 10.3975/cagsb.2016.03.03

    [4]

    李郎平, 兰恒星, 郭长宝, 等. 基于改进频率比法的川藏铁路沿线及邻区地质灾害易发性分区评价[J]. 现代地质,2017,31(5):911 − 929. [LI Langping, LAN Hengxing, GUO Changbao, et al. Geohazard susceptibility assessment along the Sichuan-Tibet Railway and its adjacent area using an improved frequency ratio method[J]. Geoscience,2017,31(5):911 − 929. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-8527.2017.05.004

    [5]

    郭长宝, 吴瑞安, 蒋良文, 等. 川藏铁路雅安—林芝段典型地质灾害与工程地质问题[J]. 现代地质,2021,35(1):1 − 17. [GUO Changbao, WU Rui'an, JIANG Liangwen, et al. Typical geohazards and engineering geological problems along the Ya'an-Linzhi section of the Sichuan-Tibet Railway, China[J]. Geoscience,2021,35(1):1 − 17. (in Chinese with English abstract)

    [6]

    吴树仁, 石菊松, 张春山, 等. 地质灾害风险评估技术指南初论[J]. 地质通报,2009,28(8):995 − 1005. [WU Shuren, SHI Jusong, ZHANG Chunshan, et al. Preliminary discussion on technical guideline for geohazard risk assessment[J]. Geological Bulletin of China,2009,28(8):995 − 1005. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-2552.2009.08.001

    [7]

    许冲, 戴福初, 姚鑫, 等. GIS支持下基于层次分析法的汶川地震区滑坡易发性评价[J]. 岩石力学与工程学报,2009,28(增刊2):3978 − 3985. [XU Chong, DAI Fuchu, YAO Xin, et al. GIS-based landslide susceptibility assessment using analytical hierarchy process in Wenchuan earthquake region[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(Sup2):3978 − 3985. (in Chinese with English abstract)

    [8]

    牛瑞卿, 彭令, 叶润青, 等. 基于粗糙集的支持向量机滑坡易发性评价[J]. 吉林大学学报(地球科学版),2012,42(2):430 − 439. [NIU Ruiqing, PENG Ling, YE Runqing, et al. Landslide susceptibility assessment based on rough sets and support vector machine[J]. Journal of Jilin University (Earth Science Edition),2012,42(2):430 − 439. (in Chinese with English abstract)

    [9]

    孙长明, 马润勇, 尚合欣, 等. 基于滑坡分类的西宁市滑坡易发性评价[J]. 水文地质工程地质,2020,47(3):173 − 181. [SUN Changming, MA Runyong, SHANG Hexin, et al. Landslide susceptibility assessment in Xining based on landslide classification[J]. Hydrogeology & Engineering Geology,2020,47(3):173 − 181. (in Chinese with English abstract)

    [10]

    OZDEMIR A, ALTURAL T. A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey[J]. Journal of Asian Earth Sciences,2013,64:180 − 197. doi: 10.1016/j.jseaes.2012.12.014

    [11]

    方然可, 刘艳辉, 苏永超, 等. 基于逻辑回归的四川青川县区域滑坡灾害预警模型[J]. 水文地质工程地质,2021,48(1):181 − 187. [FANG Ranke, LIU Yanhui, SU Yongchao, et al. A early warning model of regional landslide in Qingchuan County, Sichuan Province based on logistic regression[J]. Hydrogeology & Engineering Geology,2021,48(1):181 − 187. (in Chinese with English abstract)

    [12]

    UMAR Z, PRADHAN B, AHMAD A, et al. Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia[J]. CATENA,2014,118:124 − 135. doi: 10.1016/j.catena.2014.02.005

    [13]

    YAO X, THAM L G, DAI F C. Landslide susceptibility mapping based on Support Vector Machine: a case study on natural slopes of Hong Kong, China[J]. Geomorphology,2008,101(4):572 − 582. doi: 10.1016/j.geomorph.2008.02.011

    [14]

    杜国梁, 张永双, 吕文明, 等. 基于加权信息量模型的藏东南地区滑坡易发性评价[J]. 灾害学,2016,31(2):226 − 234. [DU Guoliang, ZHANG Yongshuang, LV Wenming, et al. Landslide susceptibility assessment based on weighted information value model in southeast Tibet[J]. Journal of Catastrophology,2016,31(2):226 − 234. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-811X.2016.02.042

    [15]

    DU G L, ZHANG Y S, IQBAL J, et al. Landslide susceptibility mapping using an integrated model of information value method and logistic regression in the Bailongjiang watershed, Gansu Province, China[J]. Journal of Mountain Science,2017,14(2):249 − 268. doi: 10.1007/s11629-016-4126-9

    [16]

    殷坤龙, 晏同珍. 汉江河谷旬阳段区域滑坡规律及斜坡不稳定性预测[J]. 地球科学,1987,12(6):631 − 638. [YIN Kunlong, YAN Tongzhen. Distribution regularity of landslides and prediction of slope instability nearby Xunyang, Han river valley[J]. Earth Science,1987,12(6):631 − 638. (in Chinese with English abstract)

    [17]

    DU G L, ZHANG Y S, YANG Z H, et al. Landslide susceptibility mapping in the region of eastern Himalayan syntaxis, Tibetan Plateau, China: a comparison between analytical hierarchy process information value and logistic regression-information value methods[J]. Bulletin of Engineering Geology and the Environment,2019,78(6):4201 − 4215. doi: 10.1007/s10064-018-1393-4

    [18]

    张玘恺, 凌斯祥, 李晓宁, 等. 九寨沟县滑坡灾害易发性快速评估模型对比研究[J]. 岩石力学与工程学报,2020,39(8):1595 − 1610. [ZHANG Qikai, LING Sixiang, LI Xiaoning, et al. Comparison of landslide susceptibility mapping rapid assessment models in Jiuzhaigou County, Sichuan Province, China[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(8):1595 − 1610. (in Chinese with English abstract)

  • 加载中

(11)

(4)

计量
  • 文章访问数:  2296
  • PDF下载数:  95
  • 施引文献:  0
出版历程
收稿日期:  2021-04-03
修回日期:  2021-05-18
刊出日期:  2021-09-15

目录