水位波动下包气带透镜体影响LNAPL迁移的数值模拟研究

潘明浩, 时健, 左锐, 赵晓, 刘嘉蔚, 薛镇坤, 王金生, 胡立堂. 水位波动下包气带透镜体影响LNAPL迁移的数值模拟研究[J]. 水文地质工程地质, 2022, 49(1): 154-163. doi: 10.16030/j.cnki.issn.1000-3665.202105027
引用本文: 潘明浩, 时健, 左锐, 赵晓, 刘嘉蔚, 薛镇坤, 王金生, 胡立堂. 水位波动下包气带透镜体影响LNAPL迁移的数值模拟研究[J]. 水文地质工程地质, 2022, 49(1): 154-163. doi: 10.16030/j.cnki.issn.1000-3665.202105027
PAN Minghao, SHI Jian, ZUO Rui, ZHAO Xiao, LIU Jiawei, XUE Zhenkun, WANG Jinsheng, HU Litang. A numerical simulation study of the effect of the vadose zone with lenses on LNAPL migration under the fluctuating water table[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 154-163. doi: 10.16030/j.cnki.issn.1000-3665.202105027
Citation: PAN Minghao, SHI Jian, ZUO Rui, ZHAO Xiao, LIU Jiawei, XUE Zhenkun, WANG Jinsheng, HU Litang. A numerical simulation study of the effect of the vadose zone with lenses on LNAPL migration under the fluctuating water table[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 154-163. doi: 10.16030/j.cnki.issn.1000-3665.202105027

水位波动下包气带透镜体影响LNAPL迁移的数值模拟研究

  • 基金项目: 国家自然科学基金项目(41877181;41831283);111引智项目(B18006)
详细信息
    作者简介: 潘明浩(1998-),男,硕士研究生,主要从事地下水污染研究。E-mail:202021470021@mail.bnu.edu.cn
    通讯作者: 左锐(1981-),男,博士,教授级高工,主要从事地下水污染控制与修复研究。E-mail:zr@bnu.edu.cn
  • 中图分类号: P641.2

A numerical simulation study of the effect of the vadose zone with lenses on LNAPL migration under the fluctuating water table

More Information
  • 轻质非水相液体(LNAPLs)在土壤包气带中具有多相态特征,非均质性、地下水位波动等因素将显著增加包气带内LNAPLs污染的复杂程度。已有研究多关注于揭示包气带内自由相LNAPLs的污染过程,少有更为深入地探究水位波动时非均质结构对LNAPLs迁移及各相态分布规律的影响。基于TOUGH2程序构建包气带多相流数值模型,以揭示透镜体结构与地下水位波动共同作用下LNAPLs迁移过程及相态分布。研究结果表明:(1)含水率变化是LNAPLs迁移分布的主要控制因素,包气带内受透镜体介质岩性、水位波动影响所呈现的含水率变化直接控制LNAPLs迁移规律及分布特征;(2)水位恒定时,细砂透镜体使LNAPL呈“蓄积穿透-横向扩展-绕流”迁移,粗砂透镜体则是LNAPL垂向迁移的“优势通道”,水位波动引起的细砂透镜体含水率变化使“绕流”显著增强,粗砂透镜体则进一步呈现“优势空间”作用;(3)水位恒定时,细砂透镜体模型中LNAPL滞留于透镜体内部,粗砂模型中LNAPL则集中于透镜体下方,水位波动下透镜体附近LNAPL分布范围扩展,两模型LNAPL分布面积较水位恒定时分别增大51%、63%;(4)两模型中LNAPL挥发通量均呈“先减小-后增大”规律,并受LNAPL-气体接触条件及LNAPL分布状况共同作用,水位波动打破三相平衡状态,主要表现为水位抬升阶段LNAPL挥发增强,此时两模型中平均挥发量较水位恒定时增大124%~126%。研究为非均质石油污染场地中的LNAPL污染过程认识提供了科学的理论依据。

  • 加载中
  • 图 1  概念模型示意图

    Figure 1. 

    图 2  各透镜体模型中的含水率变化规律

    Figure 2. 

    图 3  细砂透镜体中不同时刻LNAPL饱和度分布

    Figure 3. 

    图 4  粗砂透镜体中不同时刻LNAPL饱和度分布

    Figure 4. 

    图 5  细砂透镜体周围各观察点SNAPL对比(0~360 min)

    Figure 5. 

    图 6  地下水位波动情景中不同时刻LNAPL饱和度分布

    Figure 6. 

    图 7  水位恒定与波动条件下细砂透镜体附近SNAPL对比

    Figure 7. 

    图 8  水位恒定与波动条件下粗砂透镜体附近SNAPL对比

    Figure 8. 

    图 9  细砂、粗砂透镜体中不同时刻LNAPL在水相中的质量分数x(aq)

    Figure 9. 

    图 10  不同透镜体模型中LNAPL挥发通量对比

    Figure 10. 

    图 11  不同水位情景中LNAPL挥发通量对比

    Figure 11. 

    表 1  介质相关参数[17,25-26]

    Table 1.  Medium-relevant parameters

    介质类型中砂细砂粗砂
    孔隙度0.350.400.30
    饱和渗透率/(m2)2.37×10−111.48×10−122.26×10−10
    颗粒比重/(kg∙m−3)1650.001510.001749.00
    相对渗透率
    Stone模型
    Swr0.050.150.03
    Snr0.040.080.03
    Sgr0.000.000.00
    n2.933.003.00
    毛细压力
    van-
    Genuchten模型
    m0.660.670.67
    Slr0.020.120.02
    P0−15.105×10−43.75×10−46.02×10−4
    Pmax5×1051×1075×105
    Sls1.001.001.00
    下载: 导出CSV

    表 2  甲苯相关参数[24]

    Table 2.  Toluene-relevant parameters

    参数气相中扩散系数/(m2∙s−1)水相中扩散系数/(m2∙s−1)NAPL相扩散系数/(m2∙s−1)水中溶解度/(mol∙mol−1)
    数值8.8×10−66.0×10−106.0×10−101.01×10−4
    下载: 导出CSV
  • [1]

    YOON H, WERTH C J, BARKAN C P L, et al. An environmental screening model to assess the consequences to soil and groundwater from railroad-tank-car spills of light non-aqueous phase liquids[J]. Journal of Hazardous Materials,2009,165(1-3):332 − 344. doi: 10.1016/j.jhazmat.2008.09.121

    [2]

    刘玉兰, 程莉蓉, 丁爱中, 等. NAPL泄漏事故场地地下水污染风险快速评估与决策[J]. 中国环境科学,2011,31(7):1219 − 1224. [LIU Yulan, CHENG Lirong, DING Aizhong, et al. Quick assessment of groundwater risk after NAPL spill and its application in site emergency management[J]. China Environmental Science,2011,31(7):1219 − 1224. (in Chinese with English abstract)

    [3]

    刘汉乐, 周启友, 徐速. 非饱和带中非均质条件下LNAPL运移与分布特性实验研究[J]. 水文地质工程地质,2006,33(5):52 − 57. [LIU Hanle, ZHOU Qiyou, XU Su. An experimental investigation of LNAPL migration and redistribution in unsaturated heterogeneous porous media[J]. Hydrogeology & Engineering Geology,2006,33(5):52 − 57. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2006.05.012

    [4]

    DUNN A M, SILLIMAN S E. Air and water entrapment in the vicinity of the water table[J]. Groundwater,2003,41(6):729 − 734. doi: 10.1111/j.1745-6584.2003.tb02414.x

    [5]

    ALAZAIZA M Y D, NGIEN S K, COPTY N, et al. Assessing the influence of infiltration on the migration of light non-aqueous phase liquid in double-porosity soil media using a light transmission visualization method[J]. Hydrogeology Journal,2019,27(2):581 − 593. doi: 10.1007/s10040-018-1904-1

    [6]

    王莹莹, 郭秀军, 邵帅, 等. 土壤毛细带内油污染区探地雷达异常特征分析及状态评价[J]. 地球物理学进展,2018,33(5):2172 − 2180. [WANG Yingying, GUO Xiujun, SHAO Shuai, et al. Abnormal features analysis and status evaluation for oil contaminated site in capillary zone based on ground penetrating radar[J]. Progress in Geophysics,2018,33(5):2172 − 2180. (in Chinese with English abstract) doi: 10.6038/pg2018BB0365

    [7]

    束善治, 梁宏伟, 袁勇. 轻非水相液体在非均质地层包气带中运移和分布特征数值分析[J]. 水利学报,2002,33(11):31 − 37. [SHU Shanzhi, LIANG Hongwei, YUAN Yong. Numerical analysis of transportation and distribution of light non-aqueous phase liquids in partially saturated heterogeneous soils[J]. Journal of Hydraulic Engineering,2002,33(11):31 − 37. (in Chinese with English abstract) doi: 10.3321/j.issn:0559-9350.2002.11.006

    [8]

    SLEEP B E, SEHAYEK L, CHIEN C C. A modeling and experimental study of light nonaqueous phase liquid (LNAPL) accumulation in wells and LNAPL recovery from wells[J]. Water Resources Research,2000,36(12):3535 − 3545. doi: 10.1029/2000WR900224

    [9]

    SOOKHAK LARI K, KING A, RAYNER J L, et al. Quantifying the benefits of in-time and in-place responses to remediate acute LNAPL release incidents[J]. Journal of Environmental Management,2021,287:112356. doi: 10.1016/j.jenvman.2021.112356

    [10]

    DOBSON R, SCHROTH M H, ZEYER J. Effect of water-table fluctuation on dissolution and biodegradation of a multi-component, light nonaqueous-phase liquid[J]. Journal of Contaminant Hydrology,2007,94(3/4):235 − 248. doi: 10.1016/j.jconhyd.2007.07.007

    [11]

    罗凌云. LNAPL在包气带形成的透镜体形状及水位波动对其的影响[D]. 长春: 吉林大学, 2017.

    LUO Lingyun. The shape of lens formed of LNAPL in vadose zone and the influence of the fluctuation of the water table[D]. Changchun: Jilin University, 2017. (in Chinese with English abstract)

    [12]

    刘汉乐, 张晨富, 刘宝臣, 等. 轻非水相液体在不同粒径多孔介质中的运移与分布特性[J]. 水文地质工程地质,2014,41(2):105 − 110. [LIU Hanle, ZHANG Chenfu, LIU Baochen, et al. Experimental investigation of migration and distribution characteristics of LNAPL contaminants in porous media of different particle sizes[J]. Hydrogeology & Engineering Geology,2014,41(2):105 − 110. (in Chinese with English abstract)

    [13]

    任璇. LNAPLs在包气带层状非均质界面迁移规律的研究[D]. 长春: 吉林大学, 2019.

    REN Xuan. Study on migration law of LNAPLs at layered heterogeneous interface in vadose zone[D]. Changchun: Jilin University, 2019. (in Chinese with English abstract)

    [14]

    王颖, 陈雷, 杨洋, 等. 基于TMVOC的地下水位波动带苯系物迁移转化模拟[J]. 环境科学研究,2020,33(3):634 − 642. [WANG Ying, CHEN Lei, YANG Yang, et al. Numerical simulation of BTEX migration in groundwater table fluctuation zone based on TMOVC[J]. Research of Environmental Sciences,2020,33(3):634 − 642. (in Chinese with English abstract)

    [15]

    杨明星. 石油有机污染组分在水位波动带中的分异演化机理研究[D]. 长春: 吉林大学, 2014.

    YANG Mingxing. Fate and transport of petroleum organic compounds in water table fluctuation zone[D]. Changchun: Jilin University, 2014. (in Chinese with English abstract)

    [16]

    SCHROTH M H, ISTOK J D, SELKER J S. Three-phase immiscible fluid movement in the vicinity of textural interfaces[J]. Journal of Contaminant Hydrology,1998,32(1):1 − 23.

    [17]

    陶佳辉, 施小清, 康学远, 等. 轻非水相液体污染源区结构的影响因素数值分析[J]. 水文地质工程地质,2018,45(6):132 − 140. [TAO Jiahui, SHI Xiaoqing, KANG Xueyuan, et al. Numerical analyses of factors affecting the LNAPL source-zone architecture[J]. Hydrogeology & Engineering Geology,2018,45(6):132 − 140. (in Chinese with English abstract)

    [18]

    SIMANTIRAKI F, AIVALIOTI M, GIDARAKOS E. Implementation of an image analysis technique to determine LNAPL infiltration and distribution in unsaturated porous media[J]. Desalination,2009,248(1):705 − 715.

    [19]

    WIPFLER E L, NESS M, BREEDVELD G D, et al. Infiltration and redistribution of LNAPL into unsaturated layered porous media[J]. Journal of Contaminant Hydrology,2004,71(1−4):47 − 66. doi: 10.1016/j.jconhyd.2003.09.004

    [20]

    刘月峤, 丁爱中, 刘宝蕴, 等. 地下水位波动带中石油烃污染迁移转化规律综述[J]. 科学技术与工程,2018,18(24):172 − 178. [LIU Yueqiao, DING Aizhong, LIU Baoyun, et al. A review of the petroleum hydrocarbon contamination transformation performance in the zone of intermittent saturation[J]. Science Technology and Engineering,2018,18(24):172 − 178. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2018.24.025

    [21]

    BAEDECKER M J, EGANHOUSE R P, BEKINS B A, et al. Loss of volatile hydrocarbons from an LNAPL oil source[J]. Journal of Contaminant Hydrology,2011,126(3-4):140 − 152. doi: 10.1016/j.jconhyd.2011.06.006

    [22]

    赵科锋, 王锦国, 曹慧群. 含单裂隙非饱和带中轻非水相流体修复的数值模拟[J]. 水文地质工程地质,2020,47(5):43 − 55. [ZHAO Kefeng, WANG Jinguo, CAO Huiqun. Numerical simulation oflight non-aqueous phase liquids remediation in the unsaturated zone with single fractures[J]. Hydrogeology & Engineering Geology,2020,47(5):43 − 55. (in Chinese with English abstract)

    [23]

    PRUESS K, BATTISTELLI A. TMVOC, A numerical simulator for three-phase non-isothermal flows of multicomponent hydrocarbon mixtures in saturated-unsaturated heterogeneous media[R]. Berkeley, CA, USA: Lawrence Berkeley National Laboratory, 2002.

    [24]

    王颖, 汪洋, 唐军, 等. 基于TMVOC的水位波动带土壤气相抽提模拟[J]. 中国环境科学,2020,40(1):350 − 356. [WANG Ying, WANG Yang, TANG Jun, et al. Numerical simulation of SVE in groundwater table fluctuation zone based on TMVOC[J]. China Environmental Science,2020,40(1):350 − 356. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6923.2020.01.039

    [25]

    李永涛. LNAPLs在包气带中运移机理及模拟研究[D]. 西安: 长安大学, 2010.

    LI Yongtao. Study on migration mechanism and simulation of light nonaqueous-phase liquids in vadose zone[D]. Xi'an: Chang'an University, 2010. (in Chinese with English abstract)

    [26]

    浦烨枫, 江思珉, 栗现文, 等. DNAPLs在低渗透性夹层影响下的迁移和分布特征研究[J]. 工程勘察,2015,43(12):43 − 47. [PU Yefeng, JIANG Simin, LI Xianwen, et al. Study on migration and distribution of DNAPLs affected by layers with low permeability[J]. Geotechnical Investigation & Surveying,2015,43(12):43 − 47. (in Chinese with English abstract)

    [27]

    KARADAG K, YATI I, BULBUL SONMEZ H. Effective clean-up of organic liquid contaminants including BTEX, fuels, and organic solvents from the environment by poly(alkoxysilane) sorbents[J]. Journal of Environmental Management,2016,174:45 − 54.

    [28]

    朱振慧, 高宗军, 张晓海, 等. 轻质非水相流体(柴油)在多孔介质中的垂向运移[J]. 环境工程学报,2015,9(4):1842 − 1848. [ZHU Zhenhui, GAO Zongjun, ZHANG Xiaohai, et al. Vertical migration of LNAPLs(diesel) in porous medium[J]. Chinese Journal of Environmental Engineering,2015,9(4):1842 − 1848. (in Chinese with English abstract) doi: 10.12030/j.cjee.20150452

    [29]

    GRIBOVSZKI Z, SZILAGYI J, KALICZ P. Diurnal fluctuations in shallow groundwater levels and streamflow rates and their interpretation-A review[J]. Journal of Hydrology,2010,385(1/2/3/4):371 − 383.

    [30]

    HA J H, SEAGREN E A, SONG X. Oxygen transport across the capillary fringe in LNAPL pool-source zones[J]. Journal of Environmental Engineering, 2014, 140(12): 1 − 11.

    [31]

    KIM J, CORAPCIOGLU M Y. Modeling dissolution and volatilization of LNAPL sources migrating on the groundwater table[J]. Journal of Contaminant Hydrology,2003,65(1/2):137 − 158. doi: 10.1016/S0169-7722(02)00105-5

  • 加载中

(11)

(2)

计量
  • 文章访问数:  1413
  • PDF下载数:  11
  • 施引文献:  0
出版历程
收稿日期:  2021-05-18
修回日期:  2021-07-06
刊出日期:  2022-01-15

目录