基于FEFLOW的三维土壤-地下水耦合铬污染数值模拟研究

刘玲, 陈坚, 牛浩博, 李璐, 殷乐宜, 魏亚强. 基于FEFLOW的三维土壤-地下水耦合铬污染数值模拟研究[J]. 水文地质工程地质, 2022, 49(1): 164-174. doi: 10.16030/j.cnki.issn.1000-3665.202102008
引用本文: 刘玲, 陈坚, 牛浩博, 李璐, 殷乐宜, 魏亚强. 基于FEFLOW的三维土壤-地下水耦合铬污染数值模拟研究[J]. 水文地质工程地质, 2022, 49(1): 164-174. doi: 10.16030/j.cnki.issn.1000-3665.202102008
LIU Ling, CHEN Jian, NIU Haobo, LI Lu, YIN Leyi, WEI Yaqiang. Numerical simulation of three-dimensional soil-groundwater coupled chromium contamination based on FEFLOW[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 164-174. doi: 10.16030/j.cnki.issn.1000-3665.202102008
Citation: LIU Ling, CHEN Jian, NIU Haobo, LI Lu, YIN Leyi, WEI Yaqiang. Numerical simulation of three-dimensional soil-groundwater coupled chromium contamination based on FEFLOW[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 164-174. doi: 10.16030/j.cnki.issn.1000-3665.202102008

基于FEFLOW的三维土壤-地下水耦合铬污染数值模拟研究

  • 基金项目: 国家自然科学青年基金项目(42107015),国家重点研发计划(2018YFC1800204)
详细信息
    作者简介: 刘玲(1991-),女,硕士,主要从事水文地质与工程地质研究。E-mail:569442022@qq.com
    通讯作者: 魏亚强(1990-),男,博士,助理研究员,主要从事地下水数值模拟研究。E-mail:weiyaqiang0000@126.com
  • 中图分类号: X532

Numerical simulation of three-dimensional soil-groundwater coupled chromium contamination based on FEFLOW

More Information
  • `土壤-地下水耦合数值模拟是定量刻画水流和溶质运移的主要手段。现有大范围场地尺度的研究受到数据采集难度及模拟计算量的限制,多是将土壤和地下水分成两个系统,这种方式不利于模型之间的计算反馈,易出现计算误差,因此将土壤和地下水作为整体系统研究具有重要意义。为精确刻画实际场地土壤-地下水系统中污染物迁移规律,揭示变饱和反应溶质迁移模型的参数敏感性,以某铬污染场地为研究对象,基于现场试验及前人研究所获数据,采用Galerkin有限元法建立三维土壤-地下水模型,定量描述六价铬在土壤-地下水中的迁移规律。在此基础上,通过改变补给条件,研究潜水面在土壤-地下水系统中的波动。并讨论阻滞系数和反应常数对溶质运移的影响。结果表明:在土壤中,污染物最大水平迁移距离为场地东南侧300 m;地下水中污染晕最大分布面积约为1.632 km2;垂向上土壤中的六价铬仅需15.6 h即可下渗至潜水面,第6天贯穿含水层。当潜水面随着补给量变化而波动时,地下水中六价铬会随水流进入土壤,影响土壤中污染分布。对溶质运移参数的讨论显示,当反应常数由0增大至10−6 s-1时,迁移出场区边界时地下水中污染物浓度约减少2000 mg/L,较难迁移至涟水河。基于FEFLOW的数值模型,能够解决各系统之间交互性差的问题,提供较为精确的模拟结果。

  • 加载中
  • 图 1  研究区位置图

    Figure 1. 

    图 2  研究区水文地质平面图(本图来源为全国地质资料馆1∶20万水文地质图G4902幅)

    Figure 2. 

    图 3  场地水文地质剖面图

    Figure 3. 

    图 4  研究区模拟流场图与实际流场图

    Figure 4. 

    图 5  模拟值与实际值拟合图

    Figure 5. 

    图 6  初始污染羽分布图

    Figure 6. 

    图 7  土壤中(第三层)六价铬的运移模拟预测结果

    Figure 7. 

    图 8  地下水六价铬运移模拟预测结果

    Figure 8. 

    图 9  污染物迁移至涟水河时污染羽三维分布图

    Figure 9. 

    图 10  场地六价铬垂向浓度模拟结果

    Figure 10. 

    图 11  雨季后土壤中污染物浓度变化

    Figure 11. 

    图 12  不同阻滞系数下场区至河流浓度随距离的变化

    Figure 12. 

    图 13  不同阻滞系数河岸处观测点浓度随时间的变化

    Figure 13. 

    图 14  不同反应常数下场区至河流浓度随距离的变化

    Figure 14. 

    图 15  不同反应常数河岸处观测点浓度随时间的变化

    Figure 15. 

    表 1  六价铬检测结果

    Table 1.  Statistics of soil test results

    层位标准限值/(mg·L−1)分析总数/个超标
    个数/个
    超标率/%最大值/(mg·L−1)最小值/(mg·L−1)平均值/(mg·L−1)相对偏差/%
    上层土壤302032914.33410<1.0283733
    下层土壤30941718.13430<1.0414876
    地下水0.1452351.1109<0.0121.230.6
    下载: 导出CSV

    表 2  研究区水文地质参数取值表

    Table 2.  Values of hydrogeological parameters in the study area

    参数非饱和区饱和区
    第一亚层第二亚层第二层第三层第四层第五层
    Kxx/(m·d−10.08640.08640.11334
    Kyy/(m·d−10.08640.08640.11334
    Kzz/(m·d−10.08640.08640.010.13.30.4
    孔隙度0.50.10.050.10.30.1
    最大饱和度111///
    剩余饱和度0.120.120.12///
    /m−11.21.21.2///
    n333///
    下载: 导出CSV

    表 3  溶质运移模型参数取值表

    Table 3.  Parameter values of the solute transport model

    参数非饱和区饱和区
    第一亚层第二亚层第二层第三层第四层第五层
    弥散系数/
    (10−9m2·s−1
    200200200230023002300
    纵向弥散度/m111100100100
    横向弥散度/m0.20.20.2202020
    阻滞系数0.10.10.10.010.010.01
    反应系数/
    (10−4·s−1
    0.00160.00160.00160.00160.00160.0016
    下载: 导出CSV

    表 4  污染晕面积表

    Table 4.  Contaminant halo area

    时间/d面积/km2时间/d面积/km2
    1000.83111001.416
    2001.03012001.350
    3001.24613001.255
    4001.32114001.055
    5001.41315000.876
    6001.47816000.601
    7001.56917000.376
    8001.59618000.241
    9171.63219000.0018
    10001.46520000.0014
    下载: 导出CSV
  • [1]

    陈晨, 胡立新, 叶力. 清洁场项目地下水污染迁移研究[J]. 世界生态学,2018,7(2):80 − 88. [CHEN Chen, HU Lixin, YE Li. Study on groundwater pollution transfer in clean field project[J]. International Journal of Ecology,2018,7(2):80 − 88. (in Chinese with English abstract) doi: 10.12677/IJE.2018.72012

    [2]

    HAVARD P L, PRASHER S O, BONNELL R B. LINKFLOW a water flow computer model for water table management: Part1. Model development[J]. Transactions of the ASAE,1995,38(2):481 − 488. doi: 10.13031/2013.27856

    [3]

    FACCHI A, ORTUANI B, MAGGI D, et al. Coupled SVAT-groundwater model for water resources simulation in irrigated alluvial plains[J]. Environmental Modelling & Software,2004,19(11):1053 − 1063.

    [4]

    TWARAKAVI N K C, ŠIMUNEK J, SOPHIA S. Evaluating interactions between groundwater and vadose zone using the HYDRUS-based flow package for MODFLOW[J]. Vadose Zone Journal,2008,7(2):757 − 768. doi: 10.2136/vzj2007.0082

    [5]

    BERGVALL M. Hydrogeological modeling to improve remediation strategies for a drinking water aquifer contaminated by an aqueous phase liquid[D]. Umea: Swedish University of Agricultural Sciences, 2011.

    [6]

    张旭洋, 林青, 黄修东, 等. 大沽河流域土壤水-地下水流耦合模拟及补给量估算[J]. 土壤学报,2019,56(1):101 − 113. [ZHANG Xuyang, LIN Qing, HUANG Xiudong, et al. Soil water groundwater coupling simulation and recharge estimation in Dagu River Basin[J]. Acta pedologica Sinica,2019,56(1):101 − 113. (in Chinese with English abstract)

    [7]

    NISWONGER R G, PRUDIC D E. Modeling variably saturated flow using kinematic waves in MODFLOW[J]. Groundwater Recharge in a Desert Environment: The Southwestern United States, 2004, 9(1):101 − 112.

    [8]

    NISWONGER R G, PRUDIC D E , REGAN R S. Documentation of the unsaturated-zone flow (UZF1) package for modeling unsaturated flow between the land surface and the water table with MODFLOW-2005[R]. Reston: U. S. Geological Survey Techniques and Methods, 2006.

    [9]

    YAKIREVICH A, BORISOV V, SOREK S. A quasi three-dimensional model for flow and transport in unsaturated and saturated zones: 1. Implementation of the quasi two-dimensional case[J]. Advances in Water Resources,1998,21(8):679 − 689. doi: 10.1016/S0309-1708(97)00031-6

    [10]

    林琳, 杨金忠, 史良胜, 等. 区域饱和-非饱和地下水流运动数值模拟[J]. 武汉大学学报(工学版),2005,38(6):53 − 58. [LIN Lin, YANG Jinzhong, SHI Liangsheng, et al. Saturated and unsaturated groundwater flow numerical simulation in large scale zone[J]. Engineering Journal of Wuhan University,2005,38(6):53 − 58. (in Chinese with English abstract)

    [11]

    查元源, 朱焱, 杨金忠. 基于改进积分型Richards方程的区域地下水饱和-非饱和水流耦合模型[J]. 四川大学学报(工程科学版),2013,45(1):107 − 116. [ZHA Yuanyuan, ZHU Yan, YANG Jinzhong. A regional coupled groundwater model for unsaturated-saturated flow based on modified integrated richards equation[J]. Journal of Sichuan University (Engineering Science Edition),2013,45(1):107 − 116. (in Chinese with English abstract)

    [12]

    查元源. 饱和-非饱和水流运动高效数值算法研究及应用[D]. 武汉: 武汉大学, 2014: 5 − 7.

    ZHA Yuanyuan. Research on cost-effective algorithm for unsaturated-saturated flow and its application[D]. Wuhan: Wuhan University, 2014: 5 − 7. (in Chinese with English abstract)

    [13]

    朱焱. 区域拟三维饱和-非饱和水流与溶质运移模型研究与应用[D]. 武汉: 武汉大学, 2013: 5 − 7.

    ZHU Yan. Study on quasi-3D water flow and solute transport model in regional scales and its application[D]. Wuhan: Wuhan University, 2013: 5 − 7. (in Chinese with English abstract)

    [14]

    ZHOU Y, WANG Y X, ZWAHLEN F , et al. FEFLOW modeling of groundwater-surface water system of Maozui area of Jianghan Plain, Central China[C] //The 7th International Conference on Calibration and Reliability Groundwater Modeling(modelCARE2009). Wuhan, 2009: 241 − 244.

    [15]

    HUO Z L, FENG S Y, KANG S Z, et al. Simulation of effects of agricultural activities on groundwater level by combining FEFLOW and GIS[J]. New Zealand Journal of Agricultural Research,2007,50(5):839 − 846. doi: 10.1080/00288230709510358

    [16]

    胡健, 张祥达, 魏志诚. 基于FEFLOW在地下水数值模拟中的应用综述[J]. 地下水,2020,42(1):9 − 13. [HU Jian, ZHANG Xiangda, WEI Zhicheng. Literature review of the groundwater numerical simulation method based on the application of FEFLOW[J]. Ground water,2020,42(1):9 − 13. (in Chinese with English abstract)

    [17]

    DIERSCH H J G, PERROCHET P. On the primary variable switching technique for simulating unsaturated-saturated flows[J]. Advances in Water Resources,1999,23(3):271 − 301.

    [18]

    HUYAKORN P S, MERCER J W, WARD D S. Finite element matrix and mass balance computational schemes for transport in variably saturated porous media[J]. Water Resources Research,1985,21(3):346 − 358. doi: 10.1029/WR021i003p00346

    [19]

    DIERSCH H J G . Finite element modeling of flow, mass and heat transport in porous and fractured media[M]. Berlin: Groundwater Modelling Centre DHI-WASY GmbH, 2014: 1 − 19.

    [20]

    PANDAY S , HUYAKORN P S , THERRIEN R , et al. Improved three-dimensional finite-element techniques for field simulation of variably saturated flow and transport[J]. Journal of Contaminant Hydrology,1993, 12(1/2): 3 − 33.

    [21]

    ŠIMŮNEK J, ŠEJNA M, SAITO H , et al. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media[R]. California: University of California Riverside, 2008.

    [22]

    陈彦, 吴吉春. 含水层渗透系数空间变异性对地下水数值模拟的影响[J]. 水科学进展,2005,16(4):483 − 487. [CHEN Yan, WU Jichun. Effect of the spatial variability of hydraulic conductivity in aquifer on the numerical simulation of groundwater[J]. Advances in water science,2005,16(4):483 − 487. (in Chinese with English abstract)

    [23]

    刘兆昌. 地下水系统的污染与控制[M]. 北京: 中国环境科学出版社, 1991.

    LIU Zhaochang. Pollution and control of groundwater system[M]. Beijing: China Environmental Science Press, 1991. (in Chinese)

    [24]

    SEFEROU P , SOUPIOS P, KOURGIALAS N N, et al. Olive-oil mill wastewater transport under unsaturated and saturated laboratory conditions using the geoelectrical resistivity tomography method and the FEFLOW model[J]. Hydrogeology Journal,2013,21(6):1219 − 1234. doi: 10.1007/s10040-013-0996-x

    [25]

    GELHAR L W, WELTY C, REHFELDT K R. A critical review of data on field-scale dispersion in aquifers[J]. Water Resources Research,1992,28(7):1955 − 1974. doi: 10.1029/92WR00607

    [26]

    孙讷正. 地下水污染-数学模型和数值方法[M]. 北京: 地质出版社, 1989: 33 − 36.

    SUN Nezheng. Groundwater pollution mathematical model and numerical method[M]. Beijing: Geological Publishing House, 1989: 33 − 36. (in Chinese)

    [27]

    王焰新. 地下水污染与防治[M]. 北京: 高等教育出版社, 2007: 19 − 32.

    WANG Yanxin. Groundwater pollution and control[M]. Beijing: Higher Education Press, 2007: 19 − 32. (in Chinese)

    [28]

    姜利国, 梁冰. 非饱和-饱和区域中重金属污染物运移数值模拟[J]. 辽宁工程技术大学学报:自然科学版,2007,26(增刊 2):74 − 76. [JIANG Liguo,LIANG Bing. Numerical analog simulation of heavy metal pollution transport in variably saturated flow[J]. Journal of Liaoning Technical University(Natural Science Edition),2007,26(Sup 2):74 − 76. (in Chinese with English abstract)

    [29]

    张俊杰. 包气带中六价铬运移规律的离心试验研究[D]. 成都: 成都理工大学, 2018.

    ZHANG Junjie. Study on the migration law of hexavalent chromium in unsaturated zone through centrifugal test[D]. Chengdu: Chengdu University of Technology, 2018.(in Chinese with English abstract)

    [30]

    WENG C H, HUANG C P, ALLEN H E, et al. Chromium leaching behavior in soil derived from chromite ore processing waste[J]. The Science of The Total Environment,1994,154(1):71 − 86. doi: 10.1016/0048-9697(94)90615-7

    [31]

    KHAN A A, MUTHUKRISHNAN M, GUHA B K. Sorption and transport modeling of hexavalent chromium on soil media[J]. Journal of Hazardous Materials,2010,174(1−3):444 − 454. doi: 10.1016/j.jhazmat.2009.09.073

    [32]

    谢水波, 陈泽昂, 张晓健, 等. 宏观弥散度和阻滞系数对地下水中核素迁移模拟的影响[J]. 湖南大学学报(自然科学版),2007,34(5):78 − 82. [XIE Shuibo, CHEN Zeang, ZHANG Xiaojian, et al. Effect of macrodispersivity and retardation coefficient on retardation coefficient on radionuclide migration simulation[J]. Journal of Hunan University(Natural Sciences),2007,34(5):78 − 82. (in Chinese with English abstract)

    [33]

    KOTAS J , STASICKA Z. Chromium occurrence in the environment and methods of its speciation[J]. Environmental Pollution,2000,107(3):263 − 283.

  • 加载中

(15)

(4)

计量
  • 文章访问数:  1151
  • PDF下载数:  22
  • 施引文献:  0
出版历程
收稿日期:  2021-02-05
修回日期:  2021-04-02
刊出日期:  2022-01-15

目录