有机质含量及组分对泥炭土物理力学性质影响

裴利华, 杨醒宇, 桂跃, 王兆昌, 张毅. 有机质含量及组分对泥炭土物理力学性质影响[J]. 水文地质工程地质, 2022, 49(2): 77-85. doi: 10.16030/j.cnki.issn.1000-3665.202106009
引用本文: 裴利华, 杨醒宇, 桂跃, 王兆昌, 张毅. 有机质含量及组分对泥炭土物理力学性质影响[J]. 水文地质工程地质, 2022, 49(2): 77-85. doi: 10.16030/j.cnki.issn.1000-3665.202106009
PEI Lihua, YANG Xingyu, GUI Yue, WANG Zhaochang, ZHANG Yi. Influence of organic matter content and ingredient on the physical and mechanical properties of peat soils[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 77-85. doi: 10.16030/j.cnki.issn.1000-3665.202106009
Citation: PEI Lihua, YANG Xingyu, GUI Yue, WANG Zhaochang, ZHANG Yi. Influence of organic matter content and ingredient on the physical and mechanical properties of peat soils[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 77-85. doi: 10.16030/j.cnki.issn.1000-3665.202106009

有机质含量及组分对泥炭土物理力学性质影响

  • 基金项目: 国家自然科学基金项目(51768027;52068039);云南省科技厅重点研发计划课题(2018BC013)
详细信息
    作者简介: 裴利华(1980-),男,硕士,教授级高工,主要研究方向为岩土工程及技术。E-mail:51205627@qq.com
    通讯作者: 桂跃(1982-),男,博士,教授,硕士生导师,主要从事软黏土力学及基坑、边坡、地下工程等教学与科研工作。E-mail:gydrgui@kmust.edu.cn
  • 中图分类号: TU411.2

Influence of organic matter content and ingredient on the physical and mechanical properties of peat soils

More Information
  • 富含有机物质是泥炭土工程性质不良的主要原因。不同有机质含量及组分的泥炭土,其物理力学性质差异很大。为明确有机质含量的影响,对数十组不同有机质含量无定形泥炭土试样进行一系列室内试验,系统分析了物理、变形、强度及渗透性随有机质含量的变化规律;为比较有机质组分不同导致的工程性质差异,将以上无定形泥炭土物理力学指标与纤维泥炭土试验数据进行系统分析。结果表明:无定形泥炭土基本物理力学指标与有机质含量间有一定的线性关系,其中,初始孔隙比(e0)、天然含水率(w0)、液塑限(wLwp)、黏聚力(c)随有机质含量增加线性增大,比重(Gs)、固结系数(Cv)和内摩擦角(φ)随有机质含量增大而减小。相较无定形泥炭土,纤维泥炭土比重小、含水率大、孔隙比大。抗剪强度方面,无定形泥炭土黏聚力随有机质含量增大而增大,较纤维泥炭土略高;内摩擦角随有机质含量增大而有下降趋势,约为纤维泥炭土的1/5~1/14。渗透性方面,无定形泥炭土的初始渗透系数(kv0)及渗透指数(Ck)随有机质含量增大而减小,且普遍小于纤维泥炭土。

  • 加载中
  • 图 1  泥炭土土样

    Figure 1. 

    图 2  无定形泥炭土和纤维泥炭土扫描电镜照片

    Figure 2. 

    图 3  泥炭土比重与有机质含量的关系

    Figure 3. 

    图 4  泥炭土初始含水率与有机质含量的关系

    Figure 4. 

    图 5  泥炭土初始孔隙比与有机质含量的关系

    Figure 5. 

    图 6  泥炭土液塑限与有机质含量的关系

    Figure 6. 

    图 7  泥炭土固结系数随有机质含量变化规律

    Figure 7. 

    图 8  泥炭土黏聚力、内摩擦角随有机质含量变化规律

    Figure 8. 

    图 9  泥炭土初始渗透系数随有机质含量变化规律

    Figure 9. 

    图 10  泥炭土孔隙比与渗透系数关系

    Figure 10. 

    表 1  施甸泥炭土基本物理力学指标

    Table 1.  Basic physical and mechanical indexes of the Shidian peat soil

    指标参数样本数最小值最大值平均值
    天然含水率w0/%3859.3221.5132.8
    颗粒比重Gs381.92.62.3
    天然孔隙比e0381.63.91.6
    饱和度Sr /%3880.798.293.8
    液限wL /%3875.7307.9192.3
    塑限wp /%3826.3210.0101.4
    有机质含量wu /%3810.458.025.3
    固结系数Cv /(10−4cm2·s−1)381.18.34.0
    黏聚力c /kPa385.315.910.9
    内摩擦角φ/ (°)381.14.82.8
    渗透系数kv0/ (cm·s−1)382.1×10−91.3×10−65.4×10−7
    下载: 导出CSV

    表 2  泥炭土物理力学指标统计表

    Table 2.  Physical and mechanical indexes of the peat soil

    泥炭土
    产地
    Von
    Post值
    有机质含量
    wu/%
    纤维含量
    wf/%
    颗粒比重
    Gs
    含水率
    w0/%
    孔隙比
    e0
    液限
    wL/%
    塑限
    wP/%
    黏聚力
    c/kPa
    内摩擦角
    φ/(°)
    渗透系数
    kv0/(cm·s−1
    固结系数Cv/
    (10−4cm2·s−1
    来源
    施甸H8~H1010~58<51.90~2.6059.3~221.51.6~3.975.7~
    307.9
    26.3~
    210.0
    5.3~15.91.1~4.80.8×10−7
    3.5×10−7
    0.9~2.6本文
    Nine
    springs
    H2~H374~8475~92562~65530.0~64.3Edil et al[3]
    RichfiedH325~3137~45153~18138.1~58.3
    Hoyt
    Lakes
    H4~H53~7050~5836.8~56.7
    吉林H4~H627~8865~501.50~2.10100~5102.2~10.827.5~
    87.5
    4.9~7.025.8~27.71×10−9
    1×10−2
    9.9~24.5吕岩等[4]
    MalaysiaH2~H410~951.10~2.60167.5~672.51.0~8.1173.7~
    361.2
    Huat et al[5]
    BantingH2~H570~881.42~2.6181~3504.1~10.5285.0~
    330.0
    6.2~1226.5~34.3Huat et al[5]
    AckcH51.4~981.46~2.67560~890Skempton
    et al[6]
    滇池H7~H1022.94~32.441.84~2.55103.8~306.711.6~22.22.2~17.24.9×10−7
    1.0×10−3
    蒋忠信[22]
    OhmivH3~H430~801.60~2.30330~12007.0~18.0100.0~
    505.0
    56.7~
    368.0
    Yamaguchi[24]
    James
    bay
    H3~H4961.50~1.641000~134018.0~23.51.3×10−9
    1.0×10−2
    Mesri et al[26]
    MiddietonH3~H490~951.53~1.65510~8508.3~14.210−10~10−5
    Turkey
    AC
    H3~H422.3~71.71.63~2.14118.3~211.73.2~4.7310.2~
    320
    1.716.22.4~6.2Ulusay[27]
    Turkey
    SK
    H5~ H755~581.66~2.44105.0~559.02.7~3.3147.5~
    317.2
    1.616.21.7~22.5
    UrmiaH3~H625~771.63~2.35102~6712.4~11.21.3×10−8
    1.6×10−6
    0.3~253.7Badv
    et al[28]
    Middleton,
    etc
    H2~H39.9~9520~60.41.54~2.562.6~19.8
    Cranberry
    Bogsnitt
    H2~H460 ~7740~521.48~1.52759~946580.0~
    600.0
    375~
    400
    3.1×10−5
    2.9×10−5
    2.5~1503Elsaysed
    et al[29]
    BogsH2~H41.0×10−7
    4.0×10−4
    Hanrahan[30]
    MuskegH3~H484.2~95.41.41~1.7605~129010.3~17.51.0×10−4Samson[31]
    MatagamH2~H468~99.340~80660~15915.0×10−5
    5.0×10−3
    Lefebvre[32]
    MiddletonH3610~8506.0×10−6
    5.0×10−5
    Mesri[33]
    WisconsinH1~H320~641.41~1.94240~6002.0×10−8
    5.0×10−5
    Dhowian [34]
    Surfers
    Paradise
    H2~H363~681.57168~247259.0~
    305.0
    125~
    207
    2.4×10−5
    1.4×10−3
    3.6~128.4Al-Ani [35]
    Banyuasin
    regency and
    Sumatra
    H1~H4>80>201.39~1.90200~7003.0~15.01.9×10−4
    4.9×10−4
    9.8~57.4Sutejo
    et al[36]
    KlangH488.6~99.190.25~
    90.49
    1.23~1.48572.9~690.98.0~9.66.3×10−438.1~164.9Ali[37]
    ThompsonH2~H5612~11618.0×10−5Earl[38]
    MinnesotaH2~H387.3>18.0×10−4Boelter[39]
    下载: 导出CSV
  • [1]

    WONG L S, HASHIM R, ALI F H. A review on hydraulic conductivity and compressibility of peat[J]. Journal of Applied Sciences,2009,9(18):3207 − 3218. doi: 10.3923/jas.2009.3207.3218

    [2]

    HOBBS N B. Mire morphology and the properties and behaviour of some British and foreign peats[J]. Quarterly Journal of Engineering Geology and Hydrogeology,1986,19(1):7 − 80. doi: 10.1144/GSL.QJEG.1986.019.01.02

    [3]

    EDIL T B, Wang X. Shear strength and K0 of peats and organic soils[J]. Geotechnics of High Water Content Materials,2000:209 − 225.

    [4]

    吕岩, 佴磊, 徐燕, 等. 有机质对草炭土物理力学性质影响的机理分析[J]. 岩土工程学报,2011,33(4):655 − 660. [LYU Yan, NIE Lei, XU Yan, et al. The mechanism of organic matter effect on physical and mechanical properties of turfy soil[J]. Chinese Journal of Geotechnical Engineering,2011,33(4):655 − 660. (in Chinese with English abstract)

    [5]

    HUAT B B K, ASADI A, KAZEMIAN S. Experimental investigation on geomechanical properties of tropical organic soils and peat[J]. American Journal of Engineering and Applied Sciences,2009,2(1):184 − 188.

    [6]

    SKEMPTON A W, PETLEY D J. Ignition loss and other properties of peats and clays from avonmouth, King's Lynn and cranberry moss[J]. Géotechnique,1970,20(4):343 − 356.

    [7]

    SANTAGATA M, BOBET A, JOHNSTON C T, et al. One-dimensional compression behavior of a soil with high organic matter content[J]. Journal of Geotechnical and Geoenvironmental Engineering,2008,134(1):1 − 13. doi: 10.1061/(ASCE)1090-0241(2008)134:1(1)

    [8]

    HUAT B B K, KAZEMIAN S, PRASAD A, et al. State of an art review of peat: General perspective[J]. International Journal of Physical Sciences,2011,6(8):1988 − 1996.

    [9]

    OLGUN M, YıLDıZ M. Effect of organic fluids on the geotechnical behavior of a highly plastic clayey soil[J]. Applied Clay Science,2010,48(4):615 − 621. doi: 10.1016/j.clay.2010.03.015

    [10]

    ZENG L L, HONG Z S, WANG C, et al. Experimental study on physical properties of clays with organic matter soluble and insoluble in water[J]. Applied Clay Science,2016,132/133:660 − 667. doi: 10.1016/j.clay.2016.08.018

    [11]

    RASHID M A, BROWN J D. Influence of marine organic compounds on the engineering properties of a remoulded sediment[J]. Engineering Geology,1975,9(2):141 − 154. doi: 10.1016/0013-7952(75)90036-8

    [12]

    BOOTH J S, DAHL A G. A note on the relationships between organic matter and some geotechnical properties of a marine sediment[J]. Marine Geotechnology,1986,6(3):281 − 297. doi: 10.1080/10641198609388191

    [13]

    牟春梅, 李佰锋. 有机质含量对软土力学性质影响效应分析[J]. 水文地质工程地质,2008,35(3):42 − 46. [MU Chunmei, LI Baifeng. Influence of organic matter on mechanical character of soft soil[J]. Hydrogeology & Engineering Geology,2008,35(3):42 − 46. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2008.03.011

    [14]

    ODELL R T, THORNBURN T H, MCKENZIE L J. Relationships of atterberg limits to some other properties of Illinois soils[J]. Soil Science Society of America Journal,1960,24(4):297 − 300. doi: 10.2136/sssaj1960.03615995002400040025x

    [15]

    WILLIAM H BUSCH , GEORGE H KEL. The physical properties of Peru-Chile continental margin sediments: the influence of coastal upwelling on sediment properties[J]. SEPM Journal of Sedimentary Research,1981,51(3):705 − 719.

    [16]

    BENNETT R H, LEHMAN L, HULBERT M H, et al. Interrelationships of organic carbon and submarine sediment geotechnical properties[J]. Marine Geotechnology,1985,6(1):61 − 98. doi: 10.1080/10641198509388180

    [17]

    American Society for Testing and Materials. Standard test method for moisture, ash, and organic matter of peat and other organic soils: D 2974—87 [S]. West Conshohocken, PA, USA: American Society for Testing and Materials, 1989.

    [18]

    American Society for Testing and Materials. Standard test method for laboratory determination of the fiber content of peat samples by dry mass: D 1997—91[S]. West Conshohocken, PA, USA: American Society for Testing and Materials, 1991.

    [19]

    中华人民共和国交通部. 公路土工试验规程: JTG E40—2007[S]. 北京: 人民交通出版社, 2007.

    Ministry of Transport of the People’s Republic of China. Test methods of soils for highway engineerin: JTG E40—2007[S]. Beijing: China Communications Press, 200. (in Chinese)

    [20]

    LONG M. Review of peat strength, peat characterisation and constitutive modelling of peat with reference to landslides[J]. Studia Geotechnica et Mechanica,2005,27(3/4):67 − 90.

    [21]

    桂跃, 付坚, 吴承坤, 等. 高原湖相泥炭土渗透特性研究及机制分析[J]. 岩土力学,2016,37(11):3197 − 3207. [GUI Yue, FU Jian, WU Chengkun, et al. Hydraulic conductivity of lacustrine peaty soil in plateau areas and its mechanism analysis[J]. Rock and Soil Mechanics,2016,37(11):3197 − 3207. (in Chinese with English abstract)

    [22]

    蒋忠信. 滇池泥炭土-地质·工程[M]. 成都: 西南交通大学出版社, 1994.

    JIANG Zhongxin. Dianchi peaty soil[M]. Chengdu: Southwest Jiaotong University Press, 1994. (in Chinese)

    [23]

    ZWANENBURG C. The influence of anisotropy on the consolidation behaviour of peat[J]. TU Delft: Delft University of Technology. 2005.

    [24]

    YAMAGUCHI H, OHIRA Y, KOGURE K. Volume change characteristics of undisturbed fibrous peat[J]. Soils and Foundations,1985,25(2):119 − 134. doi: 10.3208/sandf1972.25.2_119

    [25]

    VON POST L. Sveriges geologiska undersoknings torvinventering och nogra av dess hittils vunna resultat[J]. Svenska Mosskulturforeningens Tidskrift, Jonkoping, Sweden,1921,36:1 − 37.

    [26]

    MESRI G, AJLOUNI M. Engineering properties of fibrous peats[J]. Journal of Geotechnical and Geoenvironmental Engineering,2007,133(7):850 − 866. doi: 10.1061/(ASCE)1090-0241(2007)133:7(850)

    [27]

    ULUSAY R, TUNCAY E, HASANCEBI N. Geo-engineering properties and settlement of peaty soils at an industrial site (Turkey)[J]. Bulletin of Engineering Geology and the Environment,2010,69(3):397 − 410. doi: 10.1007/s10064-010-0290-2

    [28]

    BADV K, SAYADIAN T. An investigation into the geotechnical characteristics of Urmia peat[J]. Iranian Journal of Science and Technology - Transactions of Civil Engineering,2012,36(C2):167 − 180.

    [29]

    ELSAYED A, PAIKOWSKY S, KURUP P. Characteristics and engineering properties of peaty soil underlying cranberry bogs[C]//Geo-Frontiers Congress 2011. March 13−16, 2011, Dallas, Texas, USA. Reston, VA, USA: American Society of Civil Engineers, 2011: 2812 − 2821.

    [30]

    HANRAHAN E T. An investigation of some physical properties of peat[J]. Géotechnique,1954,4(3):108 − 123.

    [31]

    SAMSON L, ROCHELLE P L. Design and performance of an expressway constructed over peat by preloading[J]. Canadian Geotechnical Journal,1972,9(4):447 − 466. doi: 10.1139/t72-044

    [32]

    LEFEBVRE G, LANGLOIS P, LUPIEN C, et al. Laboratory testing and in situ behaviour of peat as embankment foundation[J]. Canadian Geotechnical Journal,1984,21(2):322 − 337. doi: 10.1139/t84-033

    [33]

    MESRI G, STARK T D, AJLOUNI M A, et al. Secondary compression of peat with or without surcharging[J]. Journal of Geotechnical and Geoenvironmental Engineering,1997,123(5):411 − 421. doi: 10.1061/(ASCE)1090-0241(1997)123:5(411)

    [34]

    DHOWIAN A W, EDIL T B. Consolidation behavior of peats[J]. Geotechnical Testing Journal,1980,3(3):105. doi: 10.1520/GTJ10881J

    [35]

    AL-ANI H, OH E, CHAI G. Engineering properties of peat in estuarine environment[C]//Foundation and Soft Ground Engineering. 2013.

    [36]

    SUTEJO Y, SAGGAFF A, RAHAYU W, et al. Hydraulic conductivity and compressibility characteristics of fibrous peat[J]. IOP Conference Series:Materials Science and Engineering,2019,620:012053. doi: 10.1088/1757-899X/620/1/012053

    [37]

    ALI F H, SING W L, HASHIM R. Engineering properties of improved fibrous peat[J]. Scientific Research & Essays, 2010, 5(2).

    [38]

    DE GUZMAN E M B, ALFARO M C. Geotechnical properties of fibrous and amorphous peats for the construction of road embankments[J]. Journal of Materials in Civil Engineering,2018,30(7):04018149. doi: 10.1061/(ASCE)MT.1943-5533.0002325

    [39]

    BOELTER D H. Physical properties of peats as related to degree of decomposition[J]. Soil Science Society of America Journal,1969,33(4):606 − 609. doi: 10.2136/sssaj1969.03615995003300040033x

    [40]

    黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2000.

    HUANG Changyong. Soil science[M]. Beijing: Chinese Agriculture Press, 2000. (in Chinese)

    [41]

    张亚玲, 赵晓彦, 严群. 云母影响水泥软黏土强度的试验研究[J]. 水文地质工程地质,2021,48(4):101 − 108. [ZHANG Yaling, ZHAO Xiaoyan, YAN Qun. Experimental research on the influence of mica on strength of cement-reinforced soft clay[J]. Hydrogeology & Engineering Geology,2021,48(4):101 − 108. (in Chinese with English abstract)

    [42]

    TAVENAS F, JEAN P, LEBLOND P, et al. The permeability of natural soft clays. Part II: Permeability characteristics[J]. Canadian Geotechnical Journal,1983,20(4):645 − 660. doi: 10.1139/t83-073

    [43]

    YAMAGUCHI H, OHIRA Y, KOGURE K, et al. Undrained shear characteristics of normally consolidated peat under triaxial compression and extension conditions[J]. Soils and Foundations,1985,25(3):1 − 18. doi: 10.3208/sandf1972.25.3_1

  • 加载中

(10)

(2)

计量
  • 文章访问数:  1068
  • PDF下载数:  34
  • 施引文献:  0
出版历程
收稿日期:  2021-06-03
修回日期:  2021-09-26
刊出日期:  2022-03-15

目录