海水腐蚀环境下纳米SiO2改良水泥土动应力及微观分析

庄心善, 寇强. 海水腐蚀环境下纳米SiO2改良水泥土动应力及微观分析[J]. 水文地质工程地质, 2022, 49(2): 86-93. doi: 10.16030/j.cnki.issn.1000-3665.202106016
引用本文: 庄心善, 寇强. 海水腐蚀环境下纳米SiO2改良水泥土动应力及微观分析[J]. 水文地质工程地质, 2022, 49(2): 86-93. doi: 10.16030/j.cnki.issn.1000-3665.202106016
ZHUANG Xinshan, KOU Qiang. Dynamic stress and microanalyses of the cement-soil modified by nano-SiO2 in the seawater corrosive environment[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 86-93. doi: 10.16030/j.cnki.issn.1000-3665.202106016
Citation: ZHUANG Xinshan, KOU Qiang. Dynamic stress and microanalyses of the cement-soil modified by nano-SiO2 in the seawater corrosive environment[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 86-93. doi: 10.16030/j.cnki.issn.1000-3665.202106016

海水腐蚀环境下纳米SiO2改良水泥土动应力及微观分析

  • 基金项目: 国家自然科学基金项目(51708190)
详细信息
    作者简介: 庄心善(1964-),男,博士,教授,博士生导师,主要从事环境岩土工程与边坡工程等方面的教学与研究。E-mail:zhuangxinshan@163.com
  • 中图分类号: TU411.8

Dynamic stress and microanalyses of the cement-soil modified by nano-SiO2 in the seawater corrosive environment

  • 为研究纳米SiO2改良水泥土抵抗动力荷载-海水腐蚀耦合作用效果,通过动三轴、扫描电镜(SEM)、核磁共振试验(NMR),获取不同海盐溶液浓度和时间下动应力参数及NMR曲线图、SEM图,探究海盐溶液浓度和腐蚀天数对改良前后水泥土的影响。试验结果表明:改良土内部孔隙减少,土颗粒间胶结度提高,土体抵抗动力荷载-海水腐蚀耦合作用能力增强,清水环境下,养护7,14,28 d改良水泥土动强度分别提高了4.8%、6.6%、7.3%;经海水腐蚀后,土体内部结构遭到破坏,土颗粒松动且孔隙增多,水泥土动强度明显下降,腐蚀28 d、清水、1倍、2倍、3倍海水浓度溶液环境下,纳米水泥土相对于普通水泥土动强度分别提高了9.4%、7.3%、6.6%、6.3%。

  • 加载中
  • 图 1  GDS真三轴仪

    Figure 1. 

    图 2  Phenom ProX仪

    Figure 2. 

    图 3  核磁共振分析仪

    Figure 3. 

    图 4  不同腐蚀时间动应力-应变关系曲线

    Figure 4. 

    图 5  海水浓度对土体动强度影响

    Figure 5. 

    图 6  不同浓度海水腐蚀下动应力-应变关系曲线

    Figure 6. 

    图 7  时间对动强度影响

    Figure 7. 

    图 8  不同放大倍数的扫描电镜照片

    Figure 8. 

    图 9  反演处理后的核磁共振数据

    Figure 9. 

    表 1  试验用土基本物理指标

    Table 1.  Properties of the tested soil

    密度/
    (g∙cm−3
    比重孔隙
    液限/
    %
    塑限/
    %
    塑性
    指数
    压缩系数/
    (MPa−1
    1.62.681.1539.4419.4519.991.45
    下载: 导出CSV

    表 2  纳米SiO2的主要性能指标

    Table 2.  Properties of nano silicon powder

    粒径
    /nm
    比表面积
    /(m2∙g−1
    表面羟
    基/%
    摇实密度
    /(g∙cm−3
    松装密度
    /(g∙cm−3
    sio2−x
    量/%
    密度
    /(g∙cm−3
    10±5640±5048<0.22<0.15>99.92.44
    下载: 导出CSV

    表 3  试验配比方案

    Table 3.  Test matching scheme

    水泥掺量(m水泥/m湿土×100%)15%
    纳米SiO2掺量(aw/m湿土×100%)0%,2.5%
    水灰比(w/c=m /(+ m水泥))0.45
    海盐浓度/(g·L−10,35,70,105
    下载: 导出CSV
  • [1]

    何开胜. 水泥土搅拌桩的施工质量问题和解决方法[J]. 岩土力学,2002,23(6):778 − 781. [HE Kaisheng. Present construction quality problem of deep mixing cement-soil piles and solving measures[J]. Rock and Soil Mechanics,2002,23(6):778 − 781. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2002.06.035

    [2]

    熊营飞, 刘洋. 海水环境下水泥加固不同土质土体的效果研究[J]. 人民长江,2018,49(17):87 − 91. [XIONG Yingfei, LIU Yang. Comparative study on cement reinforcement effect to different soils under seawater environment[J]. Yangtze River,2018,49(17):87 − 91. (in Chinese with English abstract)

    [3]

    龚晓南. 地基处理手册[M]. 3版. 北京: 中国建筑工业出版社, 2008: 465-470

    GONG Xiaonan. Handbook of Foundation Treatment [M]. 3 ed. Beijing: China Architecture & Building Press, 2008. (in Chinese)

    [4]

    宁宝宽, 陈四利, 刘斌. 环境侵蚀下水泥土力学特性的时间效应分析[J]. 水文地质工程地质,2005,32(2):82 − 86. [NING Baokuan, CHEN Sili, LIU Bin. The timing effects of mechanical properties of cemented soil under environmental erosion[J]. Hydrogeology and Engineering Geology,2005,32(2):82 − 86. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2005.02.018

    [5]

    邢皓枫, 张好, 李浩铭. 高含盐水泥土的力学特性及微观结构研究[J]. 水文地质工程地质,2021,48(3):102 − 109. [XING Haofeng, ZHANG Hao, LI Haoming. Mechanical characteristics and microstructure of salt-rich cement-soil[J]. Hydrogeology & Engineering Geology,2021,48(3):102 − 109. (in Chinese with English abstract)

    [6]

    丁继辉, 冯俊辉, 张攀星, 等. CFG芯水泥土环组合桩复合地基动力特性试验研究[J]. 工程力学,2015,32(增刊 1):284 − 288. [DING Jihui, FENG Junhui, ZHANG Panxing, et al. Experimental study on dynamic characteristics of composite foundations of rammed cement-soil loop piles with CFG cores[J]. Engineering Mechanics,2015,32(Sup 1):284 − 288. (in Chinese with English abstract)

    [7]

    李普, 樊恒辉, 史祥, 等. 地震荷载下水泥土循环剪切特性研究[J]. 岩石力学与工程学报,2016,35(增刊 2):4227 − 4234. [LI Pu, FAN Henghui, SHI Xiang, et al. Study on cyclic shear characteristics of cement-soil under seismic loading[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(Sup 2):4227 − 4234. (in Chinese with English abstract)

    [8]

    商冉. 钢纤维陶粒混凝土抗氯离子侵蚀性能的研究[J]. 水文地质工程地质,2018,45(3):111 − 117. [SHANG Ran. Study on resistance to chloride ion erosion of SFRLC[J]. Hydrogeology & Engineering Geology,2018,45(3):111 − 117. (in Chinese with English abstract)

    [9]

    “纳米制造的基础研究”重大研究计划: “中国制造”开启纳米精度时代[N/OL]. 中国科学报, (2019-02-25)[2021-05-10].

    “Fundamental Research of Nanomanufacturing” major research plan: “Made in China” opens the era of nano precision[N/OL]. China Science Daily, 2019-02-25[2021-05-10]. http://www. nsfc. gov. cn/Portals/0/fj/fj20190226__01. pdf. (in Chinese)

    [10]

    朱孔赞, 李因文, 朱化雨, 等. 纳米改性水泥的研究进展[J]. 新世纪水泥导报,2011,17(3):6 − 10. [ZHU Kongzan, LI Yinwen, ZHU Huayu, et al. Research progress of nano-modified cement[J]. Cement Guide for New Epoch,2011,17(3):6 − 10. (in Chinese) doi: 10.3969/j.issn.1008-0473.2011.03.003

    [11]

    OLTULU M, ŞAHIN R. Single and combined effects of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strength and capillary permeability of cement mortar containing silica fume[J]. Materials Science and Engineering:A,2011,528(22/23):7012 − 7019.

    [12]

    HOSSEINPOURPIA R, VARSHOEE A, SOLTANI M, et al. Production of waste bio-fiber cement-based composites reinforced with nano-SiO2 particles as a substitute for asbestos cement composites[J]. Construction and Building Materials,2012,31:105 − 111. doi: 10.1016/j.conbuildmat.2011.12.102

    [13]

    MOHAMMADI M, HESARAKI S, HAFEZI-ARDAKANI M. Investigation of biocompatible nanosized materials for development of strong calcium phosphate bone cement: comparison of nano-titania, nano-silicon carbide and amorphous nano-silica[J]. Ceramics International,2014,40(6):8377 − 8387. doi: 10.1016/j.ceramint.2014.01.044

    [14]

    GHASABKOLAEI N, JANALIZADEH A, JAHANSHAHI M, et al. Physical and geotechnical properties of cement-treated clayey soil using silica nanoparticles: an experimental study[J]. The European Physical Journal Plus,2016,131(5):134. doi: 10.1140/epjp/i2016-16134-3

    [15]

    朱向荣, 王立峰, 丁同福. 纳米硅水泥土工程特性的试验研究[J]. 岩土工程技术,2003,17(4):187 − 192. [ZHU Xiangrong, WANG Lifeng, DING Tongfu. Study on engineering properties of nanometer silica and cement-stabilized soil[J]. Geotechnical Engineering Technique,2003,17(4):187 − 192. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-2993.2003.04.001

    [16]

    王立峰, 翟惠云. 纳米硅水泥土抗压强度的正交试验和多元线性回归分析[J]. 岩土工程学报,2010,32(增刊 1):452 − 457. [WANG Lifeng, ZHAI Huiyun. Orthogonal test and regression analysis of compressive strength of nanometer silicon and cement-stabilized soils[J]. Chinese Journal of Geotechnical Engineering,2010,32(Sup 1):452 − 457. (in Chinese with English abstract)

    [17]

    王文军. 纳米矿粉水泥土固化机理及损伤特性研究[D]. 杭州: 浙江大学, 2004

    WANG Wenjun. Study on reinforcement mechanism and damage performance of cemented soil stabilized with nanometer material[D]. Hangzhou: Zhejiang University, 2004. (in Chinese with English abstract)

    [18]

    BIN-SHAFIQUE S, RAHMAN K, YAYKIRAN M, et al. The long-term performance of two fly ash stabilized fine-grained soil subbases[J]. Resources, Conservation and Recycling,2010,54(10):666 − 672. doi: 10.1016/j.resconrec.2009.11.007

    [19]

    COATES G, 肖立志, PRAMMER M. 核磁共振测井原理与应用[M]. 孟繁萤, 译. 北京: 石油工业出版社, 2007

    COATES G, XIAO Lizhi, PRAMMER M. Principle and application of NMR logging [M]. MENG Fanying, trans. Beijing: Petroleum Industry Press, 2007. (in Chinese)

    [20]

    YAO Y B, LIU D M, CHE Y, et al. Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR)[J]. Fuel,2010,89(7):1371 − 1380. doi: 10.1016/j.fuel.2009.11.005

  • 加载中

(9)

(3)

计量
  • 文章访问数:  963
  • PDF下载数:  29
  • 施引文献:  0
出版历程
收稿日期:  2021-06-04
修回日期:  2021-09-26
刊出日期:  2022-03-15

目录