初始孔隙比对高吸力下非饱和土土水特性的影响

陈嘉伟, 李泽, 韩哲, 高游, 熊勇林, 丁瑞旋. 初始孔隙比对高吸力下非饱和土土水特性的影响[J]. 水文地质工程地质, 2022, 49(4): 47-54. doi: 10.16030/j.cnki.issn.1000-3665.202106043
引用本文: 陈嘉伟, 李泽, 韩哲, 高游, 熊勇林, 丁瑞旋. 初始孔隙比对高吸力下非饱和土土水特性的影响[J]. 水文地质工程地质, 2022, 49(4): 47-54. doi: 10.16030/j.cnki.issn.1000-3665.202106043
CHEN Jiawei, LI Ze, HAN Zhe, GAO You, XIONG Yonglin, DING Ruixuan. Effect of initial void ratio on the soil water characteristics of unsaturated soil at high suctions[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 47-54. doi: 10.16030/j.cnki.issn.1000-3665.202106043
Citation: CHEN Jiawei, LI Ze, HAN Zhe, GAO You, XIONG Yonglin, DING Ruixuan. Effect of initial void ratio on the soil water characteristics of unsaturated soil at high suctions[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 47-54. doi: 10.16030/j.cnki.issn.1000-3665.202106043

初始孔隙比对高吸力下非饱和土土水特性的影响

  • 基金项目: 浙江省省属高校基本科研业务费专项资金项目(SJLY2022007);浙江省新苗人才计划项目(2020R405031);浙江省自然科学基金项目(LY19E080012);
详细信息
    作者简介: 陈嘉伟(2000-),男,本科生,主要从事非饱和土持水特性研究。E-mail:912817583@qq.com
    通讯作者: 高游(1989-),男,博士,副教授,主要从事非饱和土力学研究。E-mail:gaoyou@nbu.edu.cn
  • 中图分类号: TU411.3

Effect of initial void ratio on the soil water characteristics of unsaturated soil at high suctions

More Information
  • 在我国西北干旱半干旱地区,处于高吸力范围内的非饱和土广泛存在于各种岩土工程中。非饱和土土水特性的研究是非饱和土渗流、强度与变形研究的基础。为研究高吸力下不同初始孔隙比非饱和土的土水特性,以一种粉土试样作为研究对象,采用饱和盐溶液蒸汽平衡法控制土试样的吸力,利用阿基米德原理量测不规则土试样的体积,通过修正的Van-Genuchten模型模拟试样高吸力下不同初始孔隙比的土水特征曲线。结果表明:(1)将土水特征曲线表示为含水率与吸力的关系时,初始孔隙比对土水曲线几乎没有影响,表明高吸力下非饱和土的土水特性主要与吸附水的含量相关;(2)以Van-Genuchten模型为基础,发现考虑初始孔隙比影响的土水特征曲线方程无法准确拟合高吸力下的土水曲线;故在此基础上方程引入修正项,得到一个能够较好地模拟高吸力下非饱和土土水特征曲线的方程;(3)将该方程应用于非饱和土相对渗透系数的模拟,可得到考虑初始孔隙比影响的非饱和土相对渗透系数方程。结合相关实测数据加以验证,其预测结果与试验数据吻合较好,说明提出的土水特征曲线方程具有一定的可靠性。

  • 加载中
  • 图 1  制样模具及试样

    Figure 1. 

    图 2  蒸汽平衡法的密闭容器

    Figure 2. 

    图 3  土样体积测量装置

    Figure 3. 

    图 4  高吸力下不同初始孔隙比土样的土水特征曲线

    Figure 4. 

    图 5  修正后的方程拟合土水特征曲线结果

    Figure 5. 

    图 6  修正后的方程拟合土水特征曲线结果

    Figure 6. 

    图 7  不同初始孔隙比粉砂壤土土水特性的模拟结果

    Figure 7. 

    图 8  不同初始孔隙比的粉砂壤土相对渗透系数预测

    Figure 8. 

    表 1  试验粉土基本物理指标

    Table 1.  Physical indices of silt

    指标比重液限
    /%
    塑限
    /%
    最优含水率/%最大干密度/(g·cm−3
    取值2.7028.7318.9615.21.81
    下载: 导出CSV

    表 2  饱和盐溶液及对应吸力值(20 °C)

    Table 2.  Saturated salt solution and corresponding suction

    饱和盐溶液总吸力/MPa
    LiCl·H2O286.70
    MgCl2·6H2O149.51
    NaBr71.12
    NaCl38.00
    KCl21.82
    KNO37.48
    K2SO43.29
    下载: 导出CSV

    表 3  典型的土水特征曲线方程

    Table 3.  Typical soil water characteristic curve equations

    编号参考文献数学表达式参数意义
    1Brooks 等[18]a为进气值/kPa;
    m为拟合参数
    2Van Genuchten[19]a、mn为拟合参数
    3Fredlund 等[20]e为自然底数;
    ψre为残余吸力值/kPa;
    a、mn为拟合参数
    4Gardner [21]an为拟合参数
    5Romero 等[22]ψre为残余吸力值/kPa;
    a、mn为拟合参数
    下载: 导出CSV

    表 4  不同类型土的粒组成分

    Table 4.  Particle size composition of different soils

    土的类型砂粒质量分数/%粉粒质量分数/%黏粒质量分数/%
    南阳膨胀土[10]66430
    粉质黏土[4]284230
    砂质粉土[24]45496
    下载: 导出CSV
  • [1]

    FREDLUND D G, RAHARDJO H. Soil mechanics for unsaturated soils[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc, 1993.

    [2]

    LU N, KHORSHIDI M. Mechanisms for soil-water retention and hysteresis at high suction range[J]. Journal of Geotechnical and Geoenvironmental Engineering,2015,141(8):04015032. doi: 10.1061/(ASCE)GT.1943-5606.0001325

    [3]

    朱利君, 裴向军, 张晓超, 等. 双聚材料改良黄土持水性及生态效应研究[J]. 水文地质工程地质,2020,47(4):158 − 166. [ZHU Lijun, PEI Xiangjun, ZHANG Xiaochao, et al. A study of water retention and ecological effects of loess improved by double polymers[J]. Hydrogeology & Engineering Geology,2020,47(4):158 − 166. (in Chinese with English abstract)

    ZHU L J, PEI X J, ZHANG X C, et al. A study of water retention and ecological effects of loess improved by double polymers[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 158-166. (in Chinese with English abstract)

    [4]

    VANAPALLI S K, FREDLUND D G, PUFAHL D E. The influence of soil structure and stress history on the soil-water characteristics of a compacted till[J]. Géotechnique,1999,51(6):573 − 576.

    [5]

    李同录, 张辉, 李萍, 等. 不同沉积环境下马兰黄土孔隙分布与土水特征的模式分析[J]. 水文地质工程地质,2020,47(3):107 − 114. [LI Tonglu, ZHANG Hui, LI Ping, et al. Mode analysis of pore distribution and soil-water characteristic curve of Malan loess under different depositional environments[J]. Hydrogeology & Engineering Geology,2020,47(3):107 − 114. (in Chinese with English abstract)

    LI T L, ZHANG H, LI P, et al. Mode analysis of pore distribution and soil-water characteristic curve of Malan loess under different depositional environments[J]. Hydrogeology & Engineering Geology, 2020, 47(3): 107-114. (in Chinese with English abstract)

    [6]

    刘小文, 叶云雪. 不同影响因素下非饱和红土土-水特征曲线的试验研究[J]. 水文地质工程地质,2015,42(2):97 − 104. [LIU Xiaowen, YE Yunxue. Experimental study of the soil-water characteristic curve of unsaturated laterite under different affecting factors[J]. Hydrogeology & Engineering Geology,2015,42(2):97 − 104. (in Chinese with English abstract)

    LIU X W, YE Y X. Experimental study of the soil-water characteristic curve of unsaturated laterite under different affecting factors[J]. Hydrogeology & Engineering Geology, 2015, 42(2): 97-104. (in Chinese with English abstract)

    [7]

    LI Z S, FLEUREAU J M, TANG L S. Aspects of compaction and drying-wetting curves of a subgrade clayey soil[J]. Géotechnique,2017,67(12):1120 − 1126.

    [8]

    伊盼盼, 牛圣宽, 韦昌富. 干密度和初始含水率对非饱和重塑粉土土水特征曲线的影响[J]. 水文地质工程地质,2012,39(1):42 − 46. [YI Panpan, NIU Shengkuan, WEI Changfu. Effects of dry density and initial moisture content on soil water characteristic curve of remolded unsaturated silt[J]. Hydrogeology & Engineering Geology,2012,39(1):42 − 46. (in Chinese with English abstract)

    YI P P, NIU S K, WEI C F. Effects of dry density and initial moisture content on soil water characteristic curve of remolded unsaturated silt[J]. Hydrogeology & Engineering Geology, 2012, 39(1): 42-46. (in Chinese with English abstract)

    [9]

    蔡国庆, 张策, 李舰, 等. 考虑初始干密度影响的SWCC预测方法研究[J]. 岩土工程学报,2018,40(增刊 2):27 − 31. [CAI Guoqing, ZHANG Ce, LI Jian, et al. Prediction method for SWCC considering initial dry density[J]. Chinese Journal of Geotechnical Engineering,2018,40(Sup 2):27 − 31. (in Chinese with English abstract)

    CAI G Q, ZHANG C, LI J, et al. Prediction method for SWCC considering initial dry density[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 27-31. (in Chinese with English abstract)

    [10]

    张佳伟, 孙德安. 全吸力范围内不同干密度膨胀土的强度特性[J]. 工业建筑,2017,47(8):84 − 88. [ZHANG Jiawei, SUN Dean. Strength characteristics of expansive soil with different dry densities in full suction range[J]. Industrial Construction,2017,47(8):84 − 88. (in Chinese with English abstract)

    ZHANG J W, SUN D A. Strength characteristics of expansive soil with different dry densities in full suction range[J]. Industrial Construction, 2017, 47(8): 84-88. (in Chinese with English abstract)

    [11]

    于沉香, 张虎元, 王志硕, 等. 盐渍土土水特征曲线测试及预测[J]. 水文地质工程地质,2013,40(2):113 − 118. [YU Chenxiang, ZHANG Huyuan, WANG Zhishuo, et al. Test and prediction of SWCC of saline soil[J]. Hydrogeology & Engineering Geology,2013,40(2):113 − 118. (in Chinese with English abstract)

    YU C X, ZHANG H Y, WANG Z S, et al. Test and prediction of SWCC of saline soil[J]. Hydrogeology & Engineering Geology, 2013, 40(2): 113-118. (in Chinese with English abstract)

    [12]

    SUN D A, SHENG D C, XU Y F. Collapse behaviour of unsaturated compacted soil with different initial densities[J]. Canadian Geotechnical Journal,2007,44(6):673 − 686. doi: 10.1139/t07-023

    [13]

    邹维列, 王协群, 罗方德, 等. 等应力和等孔隙比状态下的土–水特征曲线[J]. 岩土工程学报,2017,39(9):1711 − 1717. [ZOU Wweilie, WANG Xiequn, LUO Fangde, et al. Experimental study on SWCCs under equal stress and equal void ratio states[J]. Chinese Journal of Geotechnical Engineering,2017,39(9):1711 − 1717. (in Chinese with English abstract) doi: 10.11779/CJGE201709020

    ZOU W L, WANG X Q, LUO F D, et al. Experimental study on SWCCs under equal stress and equal void ratio states[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1711-1717. (in Chinese with English abstract) doi: 10.11779/CJGE201709020

    [14]

    GAO Y, SUN D A. Soil-water retention behavior of compacted soil with different densities over a wide suction range and its prediction[J]. Computers and Geotechnics,2017,91:17 − 26. doi: 10.1016/j.compgeo.2017.06.016

    [15]

    唐朝生, 崔玉军, TANG A M, 等. 土体干燥过程中的体积收缩变形特征[J]. 岩土工程学报,2011,33(8):1271 − 1279. [TANG Chaosheng, CUI Yujun, TANG A M, et al. Volumetric shrinkage characteristics of soil during drying[J]. Chinese Journal of Geotechnical Engineering,2011,33(8):1271 − 1279. (in Chinese with English abstract)

    TANG C S, CUI Y J, TANG A M, et al. Volumetric shrinkage characteristics of soil during drying[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1271-1279. (in Chinese with English abstract)

    [16]

    GREENSPAN L. Humidity fixed points of binary saturated aqueous solutions[J]. Journal of Research of the National Bureau of Standards,1977,81A(1):89 − 96. doi: 10.6028/jres.081A.011

    [17]

    朱赞成, 孙德安, 王小岗, 等. 基于膨润土微观结构确定土水特征曲线的残余含水率[J]. 岩土工程学报,2015,37(7):1211 − 1217. [ZHU Zancheng, SUN Dean, WANG Xiaogang, et al. Determination of residual water content in SWCC based on microscopic structure of bentonite[J]. Chinese Journal of Geotechnical Engineering,2015,37(7):1211 − 1217. (in Chinese with English abstract) doi: 10.11779/CJGE201507006

    ZHU Z C, SUN D A, WANG X G, et al. Determination of residual water content in SWCC based on microscopic structure of bentonite[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1211-1217. (in Chinese with English abstract) doi: 10.11779/CJGE201507006

    [18]

    BROOKS R H. Hydraulic properties of porous media[D]. Colorado: Colorado State University, 1964.

    [19]

    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal,1980,44(5):892 − 898. doi: 10.2136/sssaj1980.03615995004400050002x

    [20]

    FREDLUND D G, XING A. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal,1994,31(4):521 − 532. doi: 10.1139/t94-061

    [21]

    GARDNER W R. Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table[J]. Soil Science,1958,85(4):228 − 232. doi: 10.1097/00010694-195804000-00006

    [22]

    ROMERO E, VANUNAT J. Retention curves of deformable clays[C]. Experimental evidence and theoretical approaches in unsaturated soils: Proceedings of the international workshop on unsaturated soils, 2000: 91 − 106.

    [23]

    GALLIPOLI D, WHEELER S J, KARSTUNEN M. Modelling the variation of degree of saturation in a deformable unsaturated soil[J]. Géotechnique,2003,53(1):105 − 112.

    [24]

    LEE I M, SUNG S G, CHO G C. Effect of stress state on the unsaturated shear strength of a weathered granite[J]. Canadian Geotechnical Journal,2005,42(2):624 − 631. doi: 10.1139/t04-091

    [25]

    FREDLUND D G, XING A, HUANG S. Predicting the permeability function for unsaturated soils using the soil-water characteristic curve[J]. Canadian Geotechnical Journal,1994,31(4):533 − 546. doi: 10.1139/t94-062

    [26]

    BURDINE N T. Relative permeability calculations from pore size distribution data[J]. Journal of Petroleum Technology,1953,5(3):71 − 78. doi: 10.2118/225-G

    [27]

    LALIBERTE G E, COREY A T, BROOKS R H. Properties of unsaturated porous media[R]. Colorado: Colorado State University, 1966.

  • 加载中

(8)

(4)

计量
  • 文章访问数:  2446
  • PDF下载数:  40
  • 施引文献:  0
出版历程
收稿日期:  2021-06-18
修回日期:  2021-10-10
刊出日期:  2022-07-25

目录