无胶结粗粒土初始结构强度研究

张晨曦, 王洋, 魏玉峰, 梁彭, 贺琮栖. 无胶结粗粒土初始结构强度研究[J]. 水文地质工程地质, 2022, 49(2): 54-63. doi: 10.16030/j.cnki.issn.1000-3665.202107008
引用本文: 张晨曦, 王洋, 魏玉峰, 梁彭, 贺琮栖. 无胶结粗粒土初始结构强度研究[J]. 水文地质工程地质, 2022, 49(2): 54-63. doi: 10.16030/j.cnki.issn.1000-3665.202107008
ZHANG Chenxi, WANG Yang, WEI Yufeng, LIANG Peng, HE Congxi. Research on the critical strength of the initial structure of the uncemented coarse-grained soil[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 54-63. doi: 10.16030/j.cnki.issn.1000-3665.202107008
Citation: ZHANG Chenxi, WANG Yang, WEI Yufeng, LIANG Peng, HE Congxi. Research on the critical strength of the initial structure of the uncemented coarse-grained soil[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 54-63. doi: 10.16030/j.cnki.issn.1000-3665.202107008

无胶结粗粒土初始结构强度研究

  • 基金项目: 国家自然科学基金项目(42072303)
详细信息
    作者简介: 张晨曦(1996-),男,硕士研究生,主要从事岩土工程方向研究。E-mail:1193824777@qq.com
    通讯作者: 王洋(1997-),男,硕士研究生,主要从事岩土工程方向研究。E-mail:544256280@qq.com
  • 中图分类号: TU41

Research on the critical strength of the initial structure of the uncemented coarse-grained soil

More Information
  • 无论是原状土还是重塑土均存在初始结构性,土体初始结构所抵抗的剪应力为土体结构强度。为了研究无胶结粗粒土初始结构强度,定义了粗粒土剪切过程中初始结构变化点特征,并根据大于20 mm粗颗粒含量将粗粒土划分为4种结构类型,采用可视化直剪仪对不同结构特征的粗粒土进行直剪试验,通过剪切过程中粗粒土平面孔隙比、配位数、概率熵等3种初始结构指标的数值大小及变化趋势,来确定不同初始结构的粗粒土结构临界强度。结果表明:不同初始结构类型粗粒土在相同正应力、相同颗粒种类的情况下,其抗剪强度大小与结构强度占比大小的排序一致,表明了颗粒结构强度在抵抗剪应力的整个过程中起到了重要作用。4种初始结构类型粗粒土平均结构强度占比为36.27%,即结构强度占峰值抗剪强度的36.27%,其中排列接触结构的结构强度占比最高,为36.62%,其次为镶嵌结构36.61%,悬浮密实结构35.99%,叠置结构的结构强度占比最低,为35.87%。

  • 加载中
  • 图 1  土体剪切阶段示意图

    Figure 1. 

    图 2  颗粒初始结构变动点示意图

    Figure 2. 

    图 3  初始结构类型

    Figure 3. 

    图 4  可视化直剪仪结构示意图

    Figure 4. 

    图 5  试验试样

    Figure 5. 

    图 6  不同初始结构类型颗粒级配曲线

    Figure 6. 

    图 7  不同正应力下应力-位移曲线

    Figure 7. 

    图 8  颗粒主定向角示意图

    Figure 8. 

    图 9  图像处理技术过程

    Figure 9. 

    图 10  不同初始结构类型指标变化与剪应变图像

    Figure 10. 

    表 1  试样配比信息

    Table 1.  Sample ratio information

    法向荷载
    /kPa
    P20/%
    叠置结构镶嵌结构排列接触结构悬浮密实结构
    5080604015
    10080604015
    15080604015
    20080604015
    下载: 导出CSV

    表 2  初始结构信息提取结果

    Table 2.  Initial structure information extraction results

    正应力/ kPaP20/%平面孔隙率/%概率熵配位数
    501520.160.9754.67
    504017.720.9584.12
    506018.360.9534.26
    508016.920.9414.06
    1001519.520.9694.71
    1004017.580.9514.29
    1006015.960.9524.19
    1008017.930.9434.03
    1501518.390.9724.82
    1504016.560.9614.32
    1506015.770.9584.31
    1508015.600.9464.05
    2001516.720.9704.72
    2004014.600.9534.34
    2006014.970.9594.29
    2008015.520.9474.07
    下载: 导出CSV

    表 3  区间细化的各类型初始结构指标信息

    Table 3.  Initial structure index information for each type of interval refinement

    剪切位移/mm2.02.22.42.62.83.03.23.43.63.8
    悬浮密实结构配位数4.7314.7314.7354.7364.7364.7364.7374.7374.7374.738
    孔隙比18.67318.67418.68618.68918.68918.69018.69018.69118.69118.692
    概率熵0.97130.97140.97150.97170.97170.97160.97180.97180.97190.9719
    排列接触结构配位数4.2684.2684.2684.2684.2694.2694.2714.2704.2714.272
    孔隙比16.61116.61216.61216.61316.61316.61416.61816.62216.62316.624
    概率熵0.95570.95570.95570.95570.95580.95590.95600.95600.95600.9560
    镶嵌结构配位数4.2634.2634.2634.2644.2644.2644.2654.2664.2664.267
    孔隙比16.25516.25616.25816.25816.26016.26016.26916.27116.27216.273
    概率熵0.95560.95560.95570.95570.95590.95600.95640.95670.95680.9570
    叠置结构配位数4.0524.0534.0534.0534.0544.0554.0554.0564.0564.056
    孔隙比16.48216.48316.48416.48516.48916.49016.49216.49316.49516.498
    概率熵0.94430.94430.94440.94440.94460.94480.94480.94480.94490.9450
    下载: 导出CSV

    表 4  各类型初始结构强度及结构强度占比

    Table 4.  Initial structural strength of each type and the proportion of structural strength

    初始结构
    类型
    法向应力
    /kPa
    结构强度
    /kPa
    峰值抗剪
    强度/kPa
    结构强度
    占比/%
    结构强度占比
    平均值/%
    悬浮密实结构50124.73342.9536.3735.99
    100192.97531.7536.29
    150273.46759.3936.01
    200308.10873.5535.27
    排列接触结构50135.96367.8636.9636.62
    100231.33623.2037.12
    150326.55899.8336.29
    200383.911063.1636.11
    镶嵌
    结构
    50130.22347.9137.4336.61
    100225.58606.2337.21
    150297.11823.9436.06
    200348.41974.0335.77
    叠置
    结构
    50122.46338.5736.1735.87
    100196.80548.9535.85
    150255.85730.3635.03
    200280.93771.1436.43
    下载: 导出CSV
  • [1]

    郭庆国. 粗粒土的工程特性及应用[M]. 郑州: 黄河水利出版社, 1998.

    GUO Qingguo. Engineering properties of coarse soil andits application[M]. Zhengzhou: The Yellow River WaterConservancy Press, 1998. (in Chinese)

    [2]

    ODA M, NEMAT-NASSER S, MEHRABADI M M. A statistical study of fabric in a random assembly of spherical granules[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1982,6(1):77 − 94. doi: 10.1002/nag.1610060106

    [3]

    CHRISTOFFERSEN J, MEHRABADI M M, NEMAT-NASSER S. A micromechanical description of granular material behavior[J]. Journal of Applied Mechanics,1981,48(2):339 − 344. doi: 10.1115/1.3157619

    [4]

    SATAKE M. A discrete-mechanical approach to granular materials[J]. International Journal of Engineering Science,1992,30(10):1525 − 1533. doi: 10.1016/0020-7225(92)90162-A

    [5]

    ELIA G, AMOROSI A, CHAN A H C, et al. Fully coupled dynamic analysis of an earth dam[J]. Géotechnique,2011,61(7):549 − 563.

    [6]

    刘恩龙, 陈生水, 李国英, 等. 循环荷载作用下考虑颗粒破碎的堆石体本构模型[J]. 岩土力学,2012,33(7):1972 − 1978. [LIU Enlong, CHEN Shengshui, LI Guoying, et al. A constitutive model for rockfill materials incorporating grain crushing under cyclic loading[J]. Rock and Soil Mechanics,2012,33(7):1972 − 1978. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2012.07.009

    [7]

    MANOUCHEHRIAN A, SHARIFZADEH M, MARJI M F, et al. A bonded particle model for analysis of the flaw orientation effect on crack propagation mechanism in brittle materials under compression[J]. Archives of Civil and Mechanical Engineering,2014,14(1):40 − 52. doi: 10.1016/j.acme.2013.05.008

    [8]

    王占军, 陈生水, 傅中志. 堆石料的剪胀特性与广义塑性本构模型[J]. 岩土力学,2015,36(7):1931 − 1938. [WANG Zhanjun, CHEN Shengshui, FU Zhongzhi. Dilatancy behaviors and generalized plasticity constitutive model of rockfill materials[J]. Rock and Soil Mechanics,2015,36(7):1931 − 1938. (in Chinese with English abstract)

    [9]

    高政国, HAYLEY H SHEN. 基于颗粒组构特性的散体材料本构模型研究[J]. 岩土力学, 2009, 30(增刊1): 93-98

    GAO Zhengguo, HAYLEY H SHEN. A study of constitutive model for granular material based on characters of discrete particles arranged[J]. Rock and Soil Mechanics, 2009, 30(Sup 1): 93-98. (in Chinese with English abstract

    [10]

    蒋明镜, 刘静德, 孙渝刚. 基于微观破损规律的结构性土本构模型[J]. 岩土工程学报,2013,35(6):1134 − 1139. [JIANG Mingjing, LIU Jingde, SUN Yugang. Constitutive model for structured soils based on microscopic damage law[J]. Chinese Journal of Geotechnical Engineering,2013,35(6):1134 − 1139. (in Chinese with English abstract)

    [11]

    李吴刚, 杨钢, 刘文化, 等. 基于结构性参数的土本构模型研究[J]. 大连理工大学学报,2021,61(1):84 − 91. [LI Wugang, YANG Gang, LIU Wenhua, et al. Study of constitutive model for soils based on structural parameter[J]. Journal of Dalian University of Technology,2021,61(1):84 − 91. (in Chinese with English abstract) doi: 10.7511/dllgxb202101012

    [12]

    谢定义, 齐吉琳. 土结构性及其定量化参数研究的新途径[J]. 岩土工程学报,1999,21(6):651 − 656. [XIE Dingyi, QI Jilin. Soil structure characteristics and new approach in research on its quantitative parameter[J]. Chinese Journal of Geotechnical Engineering,1999,21(6):651 − 656. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.1999.06.003

    [13]

    张宁宁, 骆亚生. 非饱和黄土的结构性与强度特性的关系[J]. 中南大学学报(自然科学版),2015,46(5):1838 − 1844. [ZHANG Ningning, LUO Yasheng. Relationship between structure and strength property of unsaturated loess[J]. Journal of Central South University (Science and Technology),2015,46(5):1838 − 1844. (in Chinese with English abstract) doi: 10.11817/j.issn.1672-7207.2015.05.036

    [14]

    王勇. 黄土结构性特征及其对土体抗剪强度的影响[D]. 西安: 西北大学, 2019.

    WANG Yong. Structural characteristics of loess and its effect on soil shear strength[D]. Xi'an: Northwest University, 2019. (in Chinese with English abstract

    [15]

    郭庆国. 粗粒土的抗剪强度特性及其参数[J]. 陕西水力发电,1990,6(3):29 − 36. [GUO Qingguo. Shear strength characteristics and parameters of coarse-grained soil[J]. Shaanxi Hydropower Journal,1990,6(3):29 − 36. (in Chinese)

    [16]

    马露. 无黏性土的压缩特性及模型[J]. 水文地质工程地质,2021,48(4):72 − 77. [MA Lu. Compression characteristics and models of cohesionless soil[J]. Hydrogeology & Engineering Geology,2021,48(4):72 − 77. (in Chinese with English abstract)

    [17]

    魏婕, 魏玉峰, 黄鑫. 颗粒形状对粗粒土剪切变形影响的细观研究[J]. 水文地质工程地质,2021,48(1):114 − 122. [WEI Jie, WEI Yufeng, HUANG Xin. A meso-scale study of the influence of particle shape on shear deformation of coarse-grained soil[J]. Hydrogeology & Engineering Geology,2021,48(1):114 − 122. (in Chinese with English abstract)

    [18]

    王晓帅, 王子寒, 景晓昆, 等. 粗粒土大型直剪试验宏细观研究与离散元模拟[J]. 深圳大学学报(理工版),2020,37(3):279 − 286. [WANG Xiaoshuai, WANG Zihan, JING Xiaokun, et al. A macro-micro study and distinct element simulation on large-scale shear test of coarse-grained soil[J]. Journal of Shenzhen University (Science and Engineering),2020,37(3):279 − 286. (in Chinese with English abstract) doi: 10.3724/SP.J.1249.2020.03279

    [19]

    屈智炯. 粗粒土在高土石坝的应用研究[J]. 水电站设计,1998,14(1):83 − 88. [QU Zhijiong. Research on Application of Coarse Grained Soil in High Earth-rock Dam[J]. Design of Hydroelectric Power Station,1998,14(1):83 − 88. (in Chinese)

    [20]

    王家全, 周岳富, 唐咸远, 等. 可视大模型加筋土直剪数采仪的研发与应用[J]. 岩土力学,2017,38(5):1533 − 1540. [WANG Jiaquan, ZHOU Yuefu, TANG Xianyuan, et al. Development and application of large size direct shear test apparatus with visual and digital collection functions for reinforced soil[J]. Rock and Soil Mechanics,2017,38(5):1533 − 1540. (in Chinese with English abstract)

    [21]

    何亮, 魏玉峰, 潘远阳, 等. 基于能量耗散机制的粗粒土圆度损伤特性分析[J]. 水文地质工程地质,2019,46(5):120 − 126. [HE Liang, WEI Yufeng, PAN Yuanyang, et al. Analyses of roundness damage characteristics of coarse-grained soil based on energy dissipation mechanism[J]. Hydrogeology & Engineering Geology,2019,46(5):120 − 126. (in Chinese with English abstract)

    [22]

    王冠, 陈坚. 路基粗粒土抗剪强度影响因素分析[J]. 路基工程,2015(3):154 − 157. [WANG Guan, CHEN Jian. Analysis on factors affecting shear strength of coarse-grained soil of subgrade[J]. Subgrade Engineering,2015(3):154 − 157. (in Chinese with English abstract)

    [23]

    刘汉龙, 孙逸飞, 杨贵, 等. 粗粒料颗粒破碎特性研究述评[J]. 河海大学学报(自然科学版),2012,40(4):361 − 369. [LIU Hanlong, SUN Yifei, YANG Gui, et al. A review of particle breakage characteristics of coarse aggregates[J]. Journal of Hohai University (Natural Sciences),2012,40(4):361 − 369. (in Chinese with English abstract)

    [24]

    王光进, 杨春和, 张超, 等. 粗粒土三轴试验数值模拟与试样颗粒初始架构初探[J]. 岩土力学,2011,32(2):585 − 592. [WANG Guangjin, YANG Chunhe, ZHANG Chao, et al. Numerical simulation triaxial tests for coarse-grained soil and preliminary study of initial fabric of sample grain[J]. Rock and Soil Mechanics,2011,32(2):585 − 592. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2011.02.043

    [25]

    郭庆国. 关于粗粒土工程特性及其分类的探讨[J]. 水利水电技术,1979,10(6):53 − 57. [GUO Qingguo. Discussion on engineering characteristics and classification of coarse-grained soil[J]. Water Resources and Hydropower Engineering,1979,10(6):53 − 57. (in Chinese)

    [26]

    陈坚. 颗粒堆积结构对高速铁路路基粗粒土填料工程性质影响机制研究[D]. 成都: 西南交通大学, 2014

    CHEN Jian. Study on mechanism of effect of particle packing structure on engineering properties of coarse-ggrained soil filling high-speed railway embankment[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese with English abstract

  • 加载中

(10)

(4)

计量
  • 文章访问数:  1063
  • PDF下载数:  40
  • 施引文献:  0
出版历程
收稿日期:  2021-07-02
修回日期:  2021-09-23
刊出日期:  2022-03-15

目录